FAIR-FATE: Fair Federated Learning with Momentum

[1]  Cyprien de Lichy,et al.  Towards Multi-Objective Statistically Fair Federated Learning , 2022, ArXiv.

[2]  Kangwook Lee,et al.  Improving Fairness via Federated Learning , 2021, ArXiv.

[3]  Yahya H. Ezzeldin,et al.  FairFed: Enabling Group Fairness in Federated Learning , 2021, AAAI.

[4]  Sahil Verma,et al.  Removing biased data to improve fairness and accuracy , 2021, ArXiv.

[5]  Ziyi Kou,et al.  FairFL: A Fair Federated Learning Approach to Reducing Demographic Bias in Privacy-Sensitive Classification Models , 2020, 2020 IEEE International Conference on Big Data (Big Data).

[6]  Heiko Ludwig,et al.  Mitigating Bias in Federated Learning , 2020, ArXiv.

[7]  Michele Loi,et al.  On the Moral Justification of Statistical Parity , 2020, FAccT.

[8]  Christian Haas,et al.  Fairness in Machine Learning: A Survey , 2020, ACM Comput. Surv..

[9]  Alan Mishler,et al.  Fairness in Risk Assessment Instruments: Post-Processing to Achieve Counterfactual Equalized Odds , 2020, FAccT.

[10]  L. N. Vicente,et al.  Accuracy and fairness trade-offs in machine learning: a stochastic multi-objective approach , 2020, Computational Management Science.

[11]  Seong Joon Oh,et al.  AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights , 2020, ICLR.

[12]  Erez Shmueli,et al.  Algorithmic Fairness , 2020, ArXiv.

[13]  Hanna M. Wallach,et al.  Measurement and Fairness , 2019, FAccT.

[14]  Anastasios Kyrillidis,et al.  Demon: Improved Neural Network Training With Momentum Decay , 2019, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Li Chen,et al.  Accelerating Federated Learning via Momentum Gradient Descent , 2019, IEEE Transactions on Parallel and Distributed Systems.

[16]  Tzu-Ming Harry Hsu,et al.  Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification , 2019, ArXiv.

[17]  Kristina Lerman,et al.  A Survey on Bias and Fairness in Machine Learning , 2019, ACM Comput. Surv..

[18]  Pranjal Awasthi,et al.  Equalized odds postprocessing under imperfect group information , 2019, AISTATS.

[19]  Berk Ustun,et al.  Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions , 2019, ICML.

[20]  Prateek Mittal,et al.  Analyzing Federated Learning through an Adversarial Lens , 2018, ICML.

[21]  Sharad Goel,et al.  The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning , 2018, ArXiv.

[22]  Julia Rubin,et al.  Fairness Definitions Explained , 2018, 2018 IEEE/ACM International Workshop on Software Fairness (FairWare).

[23]  Suresh Venkatasubramanian,et al.  A comparative study of fairness-enhancing interventions in machine learning , 2018, FAT.

[24]  Nisheeth K. Vishnoi,et al.  How to be Fair and Diverse? , 2016, ArXiv.

[25]  Nathan Srebro,et al.  Equality of Opportunity in Supervised Learning , 2016, NIPS.

[26]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[27]  Krishna P. Gummadi,et al.  Fairness Constraints: Mechanisms for Fair Classification , 2015, AISTATS.

[28]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[29]  Carlos Eduardo Scheidegger,et al.  Certifying and Removing Disparate Impact , 2014, KDD.

[30]  F. Kamiran,et al.  Data preprocessing techniques for classification without discrimination , 2012, Knowledge and Information Systems.

[31]  Jun Sakuma,et al.  Fairness-Aware Classifier with Prejudice Remover Regularizer , 2012, ECML/PKDD.

[32]  Toon Calders,et al.  Three naive Bayes approaches for discrimination-free classification , 2010, Data Mining and Knowledge Discovery.

[33]  Samhita Kanaparthy,et al.  Fair Federated Learning for Heterogeneous Face Data , 2021, ArXiv.

[34]  Bernardete Ribeiro,et al.  Decay Momentum for Improving Federated Learning , 2021, ESANN.

[35]  Vaikkunth Mugunthan,et al.  Bias-Free FedGAN: A Federated Approach to Generate Bias-Free Datasets , 2021 .

[36]  Miriam Seoane Santos,et al.  FAWOS: Fairness-Aware Oversampling Algorithm Based on Distributions of Sensitive Attributes , 2021, IEEE Access.

[37]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[38]  Linda F. Wightman LSAC National Longitudinal Bar Passage Study. LSAC Research Report Series. , 1998 .

[39]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .