A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem

Abstract The two-dimensional orthogonal non-guillotine cutting problem (NGCP) appears in many industries (like wood and steel industries) and consists in cutting a rectangular master surface into a number of rectangular pieces, each with a given size and value. The pieces must be cut with their edges always parallel or orthogonal to the edges of the master surface (orthogonal cuts). The objective is to maximize the total value of the pieces cut. In this paper, we propose a two-level approach for solving the NGCP, where, at the first level, we select the subset of pieces to be packed into the master surface without specifying the layout, while at a second level we check only if a feasible packing layout exists. This approach has been already proposed by Fekete and Schepers [S.P. Fekete, J. Schepers, A new exact algorithm for general orthogonal d-dimensional knapsack problems, ESA 97, Springer Lecture Notes in Computer Science 1284 (1997) 144–156; S.P. Fekete, J. Schepers, On more-dimensional packing III: Exact algorithms, Tech. Rep. 97.290, Universitat zu Koln, Germany, 2000; S.P. Fekete, J. Schepers, J.C. van der Veen, An exact algorithm for higher-dimensional orthogonal packing, Tech. Rep. Under revision on Operations Research, Braunschweig University of Technology, Germany, 2004] and Caprara and Monaci [A. Caprara, M. Monaci, On the two-dimensional knapsack problem, Operations Research Letters 32 (2004) 2–14]. We propose improved reduction tests for the NGCP and a cutting-plane approach to be used in the first level of the tree search to compute effective upper bounds. Computational tests on problems derived from the literature show the effectiveness of the proposed approach, that is able to reduce the number of nodes generated at the first level of the tree search and the number of times the existence of a feasible packing layout is tested.

[1]  Manfred W. Padberg,et al.  Packing small boxes into a big box , 2000, Math. Methods Oper. Res..

[2]  Kathryn A. Dowsland,et al.  Efficient automated pallet loading , 1990 .

[3]  John E. Beasley,et al.  An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure , 1985, Oper. Res..

[4]  Eric M. Malstrom,et al.  A two-dimensional palletizing procedure for warehouse loading operations , 1988 .

[5]  David S. Johnson,et al.  Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .

[6]  Marco A. Boschetti,et al.  New upper bounds for the two‐dimensional orthogonal non‐guillotine cutting stock problem , 2002 .

[7]  R. W. Haessler,et al.  Cutting stock problems and solution procedures , 1991 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Marco A. Boschetti,et al.  The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case , 2003, 4OR.

[10]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[11]  Endre Boros,et al.  Network flows and non-guillotine cutting patterns , 1984 .

[12]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[13]  G. Scheithauer LP‐based bounds for the container and multi‐container loading problem , 1999 .

[14]  Paul E. Sweeney,et al.  Cutting and Packing Problems: A Categorized, Application-Orientated Research Bibliography , 1992 .

[15]  Daniele Vigo,et al.  Recent advances on two-dimensional bin packing problems , 2002, Discret. Appl. Math..

[16]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[17]  Cihan H. Dagli,et al.  An approach to two-dimensional cutting stock problems , 1987 .

[18]  Alberto Caprara,et al.  On the two-dimensional Knapsack Problem , 2004, Oper. Res. Lett..

[19]  Parviz Ghandforoush,et al.  An Improved Algorithm for the Non-Guillotine-Constrained Cutting-Stock Problem , 1990 .

[20]  Martin W. P. Savelsbergh,et al.  Lifted Cover Inequalities for 0-1 Integer Programs: Computation , 1998, INFORMS J. Comput..

[21]  Daniele Vigo,et al.  An Exact Approach to the Strip-Packing Problem , 2003, INFORMS J. Comput..

[22]  K. Dowsland An exact algorithm for the pallet loading problem , 1987 .

[23]  Harald Dyckhoff,et al.  A typology of cutting and packing problems , 1990 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Nicos Christofides,et al.  An exact algorithm for general, orthogonal, two-dimensional knapsack problems , 1995 .

[26]  Daniele Vigo,et al.  Models and Bounds for Two-Dimensional Level Packing Problems , 2004, J. Comb. Optim..

[27]  Sándor P. Fekete,et al.  A New Exact Algorithm for General Orthogonal D-Dimensional Knapsack Problems , 1997, ESA.

[28]  David Pisinger,et al.  Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem , 2007, INFORMS J. Comput..

[29]  J. C. Herz,et al.  Recursive computational procedure for two-dimensional stock cutting , 1972 .

[30]  Chin-Sheng Chen,et al.  An analytical model for the container loading problem , 1995 .

[31]  Giorgio Fasano Cargo Analytical Integration in Space Engineering: A Three-dimensional Packing Model , 1999 .

[32]  William B. Dowsland On a Research Bibliography for Cutting and Packing Problems , 1992 .

[33]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[34]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[35]  Andrea Lodi,et al.  Two-dimensional packing problems: A survey , 2002, Eur. J. Oper. Res..

[36]  Andrea Lodi,et al.  Invited Review Two-dimensional packing problems: A survey , 2002 .

[37]  Brenda S. Baker,et al.  A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.

[38]  Alan Farley Selection of stockplate characteristics and cutting style for two dimensional cutting stock situations , 1990 .

[39]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[40]  Nicos Christofides,et al.  An Algorithm for Two-Dimensional Cutting Problems , 1977, Oper. Res..

[41]  Edward G. Coffman,et al.  Average-case analysis of cutting and packing in two dimensions , 1990 .

[42]  John E. Beasley,et al.  Algorithms for Unconstrained Two-Dimensional Guillotine Cutting , 1985 .

[43]  Hidetoshi Onodera,et al.  Branch-and-bound placement for building block layout , 1991, 28th ACM/IEEE Design Automation Conference.

[44]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[45]  Harald Dyckhoff,et al.  Cutting and packing in production and distribution : a typology and bibliography , 1992 .

[46]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[47]  Sándor P. Fekete,et al.  An Exact Algorithm for Higher-Dimensional Orthogonal Packing , 2006, Oper. Res..