An Engineering Domain Knowledge-Based Framework for Modelling Highly Incomplete Industrial Data
暂无分享,去创建一个
The missing values in industrial data restrict the applications. Although this incomplete data contains enough information for engineers to support subsequent development, there are still too many missing values for algorithms to establish precise models. This is because the engineering domain knowledge is not considered, and valuable information is not fully captured. Therefore, this article proposes an engineering domain knowledge-based framework for modelling incomplete industrial data. The raw datasets are partitioned and processed at different scales. Firstly, the hierarchical features are combined to decrease the missing ratio. In order to fill the missing values in special data, which is identified for classifying the samples, samples with only part of the features presented are fully utilized instead of being removed to establish local imputation model. Then samples are divided into different groups to transfer the information. A series of industrial data is analyzed for verifying the feasibility of the proposed method.