Parametric approach to the decoupling of linear distributed-parameter systems

In this study the input–output decoupling of linear distributed-parameter systems with distributed control and distributed measurement is considered. The decoupling problem is formulated as an eigenstructure assignment problem for distributed-parameter systems, which is solved using the parametric approach. The resulting static state feedback controller exponentially stabilises the closed-loop system and decouples the reference transfer behaviour with respect to the first p dominant closed-loop modal states. The residual dynamics are taken into account by compensating further dominant eigenvalues with transmission zeros, so that they do not influence the reference transfer behaviour. A heat conductor is used to demonstrate the design procedure which is also compared with an early lumping approach.

[1]  Naohisa Otsuka,et al.  Decoupling by State Feedback in Infinite-Dimensional Systems , 1990 .

[2]  Joachim Deutscher,et al.  Parametric state feedback design of linear distributed-parameter systems , 2009, Int. J. Control.

[3]  Christopher I. Byrnes,et al.  Output regulation for linear distributed parameter systems , 2000, IEEE Trans. Autom. Control..

[4]  A. Bradshaw Modal control of distributed-parameter vibratory systems , 1974 .

[5]  A. J. Barret,et al.  Methods of Mathematical Physics, Volume I . R. Courant and D. Hilbert. Interscience Publishers Inc., New York. 550 pp. Index. 75s. net. , 1954, The Journal of the Royal Aeronautical Society.

[6]  B. Porter,et al.  Modal control of a class of distributed-parameter systems: multi-eigenvalue assignment† , 1972 .

[7]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[8]  Bao-Zhu Guo,et al.  Riesz spectral systems , 2001 .

[9]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[10]  Denis Dochain,et al.  Sturm-Liouville systems are Riesz-spectral systems , 2003 .

[11]  R. Curtain DECOUPLING IN INFINITE DIMENSIONS , 1985 .

[12]  Functional reproducibility and decoupling using state feedback and dynamic compensation in parabolic distributed parameter systems , 1983 .

[13]  P. Wang,et al.  Modal feedback stabilization of a linear distributed system , 1972 .

[14]  Naohisa Otsuka Simultaneous Decoupling and Disturbance-Rejection Problems for Infinite-Dimensional Systems , 1991 .

[15]  Naohisa Otsuka,et al.  Triangular Decoupling and Stabilization for Linear Control Systems in Hilbert Spaces , 1989 .