Rule Based Temporal Inference

Time-wise knowledge is relevant in knowledge graphs as the majority facts are true in some time period, for instance, (Barack Obama, president of, USA, 2009, 2017). Consequently, temporal information extraction and temporal scoping of facts in knowledge graphs have been a focus of recent research. Due to this, a number of temporal knowledge graphs have become available such as YAGO and Wikidata. In addition, since the temporal facts are obtained from open text, they can be weighted, i.e., the extraction tools assign each fact with a confidence score indicating how likely that fact is to be true. Temporal facts coupled with confidence scores result in a probabilistic temporal knowledge graph. In such a graph, probabilistic query evaluation (marginal inference) and computing most probable explanations (MPE inference) are fundamental problems. In addition, in these problems temporal coalescing, an important research in temporal databases, is very challenging. In this work, we study these problems by using probabilistic programming. We report experimental results comparing the efficiency of several state of the art systems.

[1]  Christopher Ré,et al.  Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS , 2011, Proc. VLDB Endow..

[2]  Prasoon Goyal,et al.  Probabilistic Databases , 2009, Encyclopedia of Database Systems.

[3]  GetoorLise,et al.  Hinge-loss Markov random fields and probabilistic soft logic , 2017 .

[4]  Claudio Gutiérrez,et al.  Temporal RDF , 2005, ESWC.

[5]  Gerhard Weikum,et al.  YAGO2: exploring and querying world knowledge in time, space, context, and many languages , 2011, WWW.

[6]  Dan Suciu,et al.  SlimShot: In-Database Probabilistic Inference for Knowledge Bases , 2016, Proc. VLDB Endow..

[7]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[8]  Hong Zhu,et al.  On efficient conditioning of probabilistic relational databases , 2016, Knowl. Based Syst..

[9]  Robert B. Ross,et al.  Probabilistic temporal databases, I: algebra , 2001, TODS.

[10]  Martin Theobald,et al.  Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases , 2011, BTW.

[11]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[12]  Andrew U. Frank,et al.  Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.

[13]  Luc De Raedt,et al.  Inducing Probabilistic Relational Rules from Probabilistic Examples , 2015, IJCAI.

[14]  Daisy Zhe Wang,et al.  ScaLeKB: scalable learning and inference over large knowledge bases , 2016, The VLDB Journal.

[15]  Martin Theobald,et al.  Top-k query processing in probabilistic databases with non-materialized views , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[16]  Michael H. Böhlen,et al.  Temporal alignment , 2012, SIGMOD Conference.

[17]  Gultekin Özsoyoglu,et al.  Temporal and Real-Time Databases: A Survey , 1995, IEEE Trans. Knowl. Data Eng..

[18]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[19]  Hans-Peter Kriegel,et al.  Querying Uncertain Spatio-Temporal Data , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[20]  Richard T. Snodgrass,et al.  Coalescing in Temporal Databases , 1996, VLDB.

[21]  Christopher De Sa,et al.  Incremental Knowledge Base Construction Using DeepDive , 2015, The VLDB Journal.

[22]  Daisy Zhe Wang,et al.  Knowledge expansion over probabilistic knowledge bases , 2014, SIGMOD Conference.

[23]  Oren Etzioni,et al.  Identifying Relations for Open Information Extraction , 2011, EMNLP.

[24]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[25]  Martin Theobald,et al.  A Temporal-Probabilistic Database Model for Information Extraction , 2013, Proc. VLDB Endow..

[26]  Oren Etzioni,et al.  Markov Logic Networks for Natural Language Question Answering , 2015, ArXiv.

[27]  Fabian M. Suchanek,et al.  Fast rule mining in ontological knowledge bases with AMIE+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{docu , 2015, The VLDB Journal.

[28]  Luc De Raedt,et al.  On the implementation of the probabilistic logic programming language ProbLog , 2010, Theory and Practice of Logic Programming.

[29]  Oren Etzioni,et al.  Learning First-Order Horn Clauses from Web Text , 2010, EMNLP.

[30]  V. S. Subrahmanian Probabilistic Temporal Databases , 2009, Encyclopedia of Database Systems.

[31]  Heiner Stuckenschmidt,et al.  Marrying Uncertainty and Time in Knowledge Graphs , 2017, AAAI.