Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells

[1]  D. Carling,et al.  Dual regulation of the AMP‐activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle , 1998, The EMBO journal.

[2]  M. Tarnopolsky,et al.  A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies , 1997, Muscle & nerve.

[3]  A. Koretsky,et al.  The role of creatine kinase in inhibition of mitochondrial permeability transition , 1997, FEBS letters.

[4]  Arend Heerschap,et al.  Altered Ca2+ Responses in Muscles with Combined Mitochondrial and Cytosolic Creatine Kinase Deficiencies , 1997, Cell.

[5]  K. Campbell,et al.  Muscular dystrophies and the dystrophin-glycoprotein complex. , 1997, Current opinion in neurology.

[6]  C. Cognard,et al.  Hypoosmotic shocks induce elevation of resting calcium level in duchenne muscular dystrophy myotubes contracting in vitro , 1996, Neuromuscular Disorders.

[7]  G Cederblad,et al.  Muscle creatine loading in men. , 1996, Journal of applied physiology.

[8]  L. Metzinger,et al.  Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress , 1996, British journal of pharmacology.

[9]  L. Metzinger,et al.  Modulation by prednisolone of calcium handling in skeletal muscle cells , 1995, British Journal of Pharmacology.

[10]  A. Nishikawa,et al.  Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. , 1995, Journal of biochemistry.

[11]  K. Campbell,et al.  Dystrophin-glycoprotein complex: molecular organization and critical roles in skeletal muscle. , 1995, Current opinion in neurology.

[12]  J. Tidball,et al.  Apoptosis precedes necrosis of dystrophin-deficient muscle. , 1995, Journal of cell science.

[13]  J. Tidball,et al.  Calpains Are Activated in Necrotic Fibers from mdx Dystrophic Mice (*) , 1995, The Journal of Biological Chemistry.

[14]  R. Edwards,et al.  Time course of changes in plasma membrane permeability in the dystrophin‐deficient mdx mouse , 1994, Muscle & nerve.

[15]  A. Franco-Obregón,et al.  Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. , 1994, The Journal of physiology.

[16]  J. Chamberlain,et al.  Myotubes from transgenic mdx mice expressing full-length dystrophin show normal calcium regulation. , 1994, Molecular biology of the cell.

[17]  L. Hagenfeldt,et al.  Creatine treatment in MELAS. , 1994, Muscle & nerve.

[18]  M. Kilimann,et al.  A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/noradrenaline transporter family. , 1994, Journal of Molecular Biology.

[19]  W. Hemmer,et al.  III-2 CREATINE KINASE IN NON-MUSCLE TISSUES AND CELLS , 1994 .

[20]  E. Carafoli,et al.  The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte. , 1994, Cell calcium.

[21]  J. Ervasti,et al.  A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin , 1993, The Journal of cell biology.

[22]  J. Léger,et al.  Prednisolone enhances myogenesis and dystrophin‐related protein in skeletal muscle cell cultures from mdx mouse , 1993, Journal of neuroscience research.

[23]  S. Byrd,et al.  Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca(2+)-ATPase. , 1993, European journal of biochemistry.

[24]  M. Kilimann,et al.  A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. , 1993, The Journal of biological chemistry.

[25]  H. Sweeney,et al.  Dystrophin protects the sarcolemma from stresses developed during muscle contraction. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Tidball,et al.  Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. , 1992, Experimental cell research.

[27]  M. Wyss,et al.  Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. , 1992, Biochimica et biophysica acta.

[28]  M. Wyss,et al.  Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. , 1992, The Biochemical journal.

[29]  J. Ervasti,et al.  Membrane organization of the dystrophin-glycoprotein complex , 1991, Cell.

[30]  B. Winegar,et al.  Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes. , 1991, Biophysical journal.

[31]  S. Frostick,et al.  Energy status of cells lacking dystrophin: an in vivo/in vitro study of mdx mouse skeletal muscle. , 1991, Biochimica et biophysica acta.

[32]  H. Jockusch,et al.  Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse , 1991, Nature.

[33]  W. Denetclaw,et al.  Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. , 1990, Science.

[34]  J. Lansman,et al.  Calcium entry through stretch-inactivated ion channels in mdx myotubes , 1990, Nature.

[35]  H. Eppenberger,et al.  Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. , 1990, The Journal of biological chemistry.

[36]  R. Steinhardt,et al.  Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice , 1988, Nature.

[37]  D. Muller,et al.  Energy Metabolism and Quantal Acetylcholine Release: Effects of Botulinum Toxin, l‐Fluoro‐2,4‐Dinitrobenzene, and Diamide in the Torpedo Electric Organ , 1988, Journal of neurochemistry.

[38]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.