Bifurcation scenario in a driven R-L-diode circuit

[1]  L. Chua,et al.  Devil's staircase route to chaos in a non-linear circuit , 1986 .

[2]  L. Chua,et al.  Experimental confirmation of the period-adding route to chaos in a nonlinear circuit , 1986 .

[3]  Pérez Mechanism for global features of chaos in a driven nonlinear oscillator. , 1985, Physical review. A, General physics.

[4]  C. Jeffries Chaotic Dynamics of Instabilities in Solids , 1985 .

[5]  Sang-Yung Shin,et al.  One-dimensional map and its modification for periodic-chaotic sequence in a driven nonlinear oscillator , 1984 .

[6]  Leon O. Chua,et al.  Simplest chaotic nonautonomous circuit , 1984 .

[7]  Martin Hasler,et al.  Bifurcation diagram for a piecewise-linear circuit , 1984 .

[8]  R. W. Rollins,et al.  Exactly solvable model of a physical system exhibiting multidimensional chaotic behavior , 1984 .

[9]  M. Hasler,et al.  Transition to chaos in a simple nonlinear circuit driven by a sinusoidal voltage source , 1983 .

[10]  Daniel Dewey,et al.  Self-replicating attractor of a driven semiconductor oscillator , 1983 .

[11]  J. S. deGrassie,et al.  Observation of multiple-valued attractors and crises in a driven nonlinear circuit , 1983 .

[12]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  R. W. Rollins,et al.  Exactly Solvable Model of a Physical System Exhibiting Universal Chaotic Behavior , 1982 .

[14]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[15]  Jose Antonio Coarasa Perez,et al.  Evidence for universal chaotic behavior of a driven nonlinear oscillator , 1982 .

[16]  P. Linsay Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator , 1981 .

[17]  Michał Misiurewicz,et al.  STRANGE ATTRACTORS FOR THE LOZI MAPPINGS , 1980 .

[18]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[19]  Edward S. Yang,et al.  Fundamentals of Semiconductor Devices , 1978 .

[20]  Sung Mo Kang,et al.  Section-wise piecewise-linear functions: Canonical representation, properties, and applications , 1977, Proceedings of the IEEE.