Forecasting global stock market implied volatility indices

Abstract This study compares parametric and non-parametric techniques in terms of their forecasting power on implied volatility indices. We extend our comparisons using combined and model-averaging models. The forecasting models are applied on eight implied volatility indices of the most important stock market indices. We provide evidence that the non-parametric models of Singular Spectrum Analysis combined with Holt-Winters (SSA-HW) exhibit statistically superior predictive ability for the one and ten trading days ahead forecasting horizon. By contrast, the model-averaged forecasts based on both parametric (Autoregressive Integrated model) and non-parametric models (SSA-HW) are able to provide improved forecasts, particularly for the ten trading days ahead forecasting horizon. For robustness purposes, we build two trading strategies based on the aforementioned forecasts, which further confirm that the SSA-HW and the ARI-SSA-HW are able to generate significantly higher net daily returns in the out-of-sample period.

[1]  Yi Lu,et al.  Forecasting realized volatility using a long-memory stochastic volatility model : estimation, prediction and seasonal adjustment , 2006 .

[2]  Jeff Fleming The quality of market volatility forecasts implied by S&P 100 index option prices , 1998 .

[3]  Tao Wang,et al.  Modeling daily realized futures volatility with singular spectrum analysis , 2002 .

[4]  Emmanuel Sirimal Silva,et al.  On the use of singular spectrum analysis for forecasting U.S. trade before, during and after the 2008 recession , 2015 .

[5]  Stavros Degiannakis,et al.  Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model , 2004 .

[6]  M. Medeiros,et al.  Modeling and predicting the CBOE market volatility index , 2014 .

[7]  David I. Harvey The evaluation of economic forecasts , 1997 .

[8]  S. Beckers Standard deviations implied in option prices as predictors of future stock price variability , 1981 .

[9]  Nina Golyandina,et al.  Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package , 2013, 1309.5050.

[10]  Gary Brown,et al.  Forecasting before, during, and after recession with singular spectrum analysis , 2013 .

[11]  A. I. McLeod,et al.  Parsimony, model adequacy and periodic correlation in time series forecasting , 1993, 1611.01535.

[12]  Eemeli Sutelainen A forecast comparison of volatility models : Evidence from Nordic equity markets , 2019 .

[13]  Stavros Degiannakis,et al.  ARCH Models for Financial Applications , 2010 .

[14]  The Relation between Implied and Realized Volatility , 1999 .

[15]  Helmut Lütkepohl,et al.  Forecasting levels of log variables in vector autoregressions , 2011 .

[16]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[17]  Neil Shephard,et al.  A semiparametric stochastic volatility model , 2012 .

[18]  George A. Christodoulakis,et al.  Common volatility and correlation clustering in asset returns , 2007, Eur. J. Oper. Res..

[19]  Werner Kristjanpoller,et al.  Volatility forecast using hybrid Neural Network models , 2014, Expert Syst. Appl..

[20]  H. Booth,et al.  Mortality Modelling and Forecasting: a Review of Methods , 2008, Annals of Actuarial Science.

[21]  Y. Jung A portfolio insurance strategy for volatility index (VIX) futures , 2016 .

[22]  Christina Beneki,et al.  Signal Extraction and Forecasting of the UK Tourism Income Time Series. A Singular Spectrum Analysis Approach , 2012 .

[23]  Jeff Fleming,et al.  Predicting stock market volatility: A new measure , 1995 .

[24]  Rodrigo Sekkel,et al.  Forecasting with Many Models: Model Confidence Sets and Forecast Combination , 2013 .

[25]  A. Zhigljavsky,et al.  Forecasting European industrial production with singular spectrum analysis , 2009 .

[26]  Dimitrios D. Thomakos,et al.  A review on singular spectrum analysis for economic and financial time series , 2010 .

[27]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[28]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[29]  Jozef Baruník,et al.  Modeling and Forecasting Exchange Rate Volatility in Time-Frequency Domain , 2012, Eur. J. Oper. Res..

[30]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[31]  Fotios Petropoulos,et al.  forecast: Forecasting functions for time series and linear models , 2018 .

[32]  C. Granger,et al.  Improved methods of combining forecasts , 1984 .

[33]  Piotr Cofta,et al.  The Model of Confidence , 2007 .

[34]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[35]  Jui-Chung Hung,et al.  Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility , 2011, Appl. Soft Comput..

[36]  Mohammad Hossein Fazel Zarandi,et al.  A hybrid modeling approach for forecasting the volatility of S&P 500 index return , 2012, Expert Syst. Appl..

[37]  L. Ederington,et al.  Forecasting Volatility , 2004 .

[38]  Todd E. Clark,et al.  Approximately Normal Tests for Equal Predictive Accuracy in Nested Models , 2005 .

[39]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[40]  Anatoly A. Zhigljavsky,et al.  Singular spectrum analysis: methodology and application to economics data , 2009, J. Syst. Sci. Complex..

[41]  C. H. Ted Hong Arbitrage Valuation of Variance Forecasts with Simulated Options , 2005 .

[42]  Abdol S. Soofi,et al.  Nonlinear Forecasting of Noisy Financial Data , 2002 .

[43]  Chris Chatfield,et al.  Model uncertainty and forecast accuracy , 1996 .

[44]  Stavros Degiannakis,et al.  Volatility forecasting: intra-day versus inter-day models , 2008 .

[45]  Marwan Izzeldin,et al.  Forecasting Daily Stock Volatility: the Role of Intraday Information and Market Conditions , 2008 .

[46]  P. Giot The information content of implied volatility in agricultural commodity markets , 2003 .

[47]  Emmanuel Sirimal Silva,et al.  Forecasting Accuracy Evaluation of Tourist Arrivals: Evidence from Parametric and Non-Parametric Techniques , 2015 .

[48]  C. Granger,et al.  Forecasting transformed series , 1976 .

[49]  David P. Simon The Nasdaq Volatility Index During and After the Bubble , 2003 .

[50]  G. Filis,et al.  Forecasting oil price realized volatility using information channels from other asset classes , 2017 .

[51]  Jui-Chung Hung,et al.  Adaptive Fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization , 2011, Inf. Sci..

[52]  S. Koopman,et al.  Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements , 2004 .

[53]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[54]  C. Tebaldi,et al.  Long Run Risk and the Persistence of Consumption Shocks , 2013 .

[55]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[56]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[57]  Marius Ooms,et al.  A Package for Estimating, Forecasting and Simulating Arfima Models: Arfima package 1.0 for Ox , 1999 .

[58]  Amélie Charles,et al.  The day-of-the-week effects on the volatility: The role of the asymmetry , 2010, Eur. J. Oper. Res..

[59]  Benoît Sévi,et al.  Forecasting the volatility of crude oil futures using intraday data , 2014, Eur. J. Oper. Res..

[60]  Stephen Taylor,et al.  Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High Frequency Index Returns , 2000 .

[61]  Stavros Degiannakis,et al.  ARFIMAX and ARFIMAX-TARCH realized volatility modeling , 2008 .

[62]  Stavros Degiannakis,et al.  The Use of GARCH Models in VaR Estimation , 2004 .

[63]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[64]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[65]  Carlo A. Favero,et al.  Model Uncertainty, Thick Modelling and the Predictability of Stock Returns , 2003 .

[66]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[67]  Stavros Degiannakis,et al.  Rolling-sampled parameters of ARCH and Levy-stable models , 2008 .

[68]  The Information Content of Implied Volatility: Evidence from Australia , 2008 .

[69]  Torben G. Andersen,et al.  Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities , 2005 .

[70]  B. Christensen,et al.  The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets , 2007 .

[71]  R. Donaldson,et al.  An artificial neural network-GARCH model for international stock return volatility , 1997 .

[72]  Melike Bildirici,et al.  Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange , 2009, Expert Syst. Appl..

[73]  Clive W. J. Granger,et al.  Forecasting transformed series , 1976 .

[74]  Theodore Alexandrov,et al.  A METHOD OF TREND EXTRACTION USING SINGULAR SPECTRUM ANALYSIS , 2008, 0804.3367.

[75]  Liang-Ying Wei,et al.  A GA-weighted ANFIS model based on multiple stock market volatility causality for TAIEX forecasting , 2013, Appl. Soft Comput..

[76]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[77]  A. Timmermann Forecast Combinations , 2005 .

[78]  Donald P. Chiras,et al.  The information content of option prices and a test of market efficiency , 1978 .