Instanton counting on blowup. I. 4-dimensional pure gauge theory

We give a mathematically rigorous proof of Nekrasov’s conjecture: the integration in the equivariant cohomology over the moduli spaces of instantons on ℝ4 gives a deformation of the Seiberg-Witten prepotential for N=2 SUSY Yang-Mills theory. Through a study of moduli spaces on the blowup of ℝ4, we derive a differential equation for the Nekrasov’s partition function. It is a deformation of the equation for the Seiberg-Witten prepotential, found by Losev et al., and further studied by Gorsky et al.

[1]  中島 啓 Lectures on Hilbert schemes of points on surfaces , 1999 .

[2]  D. Huybrechts,et al.  The geometry of moduli spaces of sheaves , 1997 .

[3]  S. Donaldson Instantons and geometric invariant theory , 1984 .

[4]  N. Seiberg,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .

[5]  G. Ellingsrud,et al.  Wall-Crossing Formulas, the Bott Residue Formula and the Donaldson Invariants of Rational Surfaces , 1995, alg-geom/9506019.

[6]  The Uses of Whitham Hierarchies , 1999, hep-th/9905053.

[7]  S. Donaldson Geometry of four-manifolds , 1990 .

[8]  W. Graham,et al.  Equivariant intersection theory , 1996, alg-geom/9609018.

[9]  On the K-theory of the cyclic quiver variety , 1999, math/9902091.

[10]  L. Gottsche Modular forms and Donaldson invariants for 4-manifolds with $b_+=1$ , 1995, alg-geom/9506018.

[11]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[12]  Hiraku Nakajima Lectures on Hilbert Schemes of Points on Surfaces , 1999 .

[13]  Andrei Okounkov,et al.  Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.

[14]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[15]  William Graham,et al.  Equivariant intersection theory (With an Appendix by Angelo Vistoli: The Chow ring of M2) , 1998 .

[16]  M. Atiyah THE INDEX OF ELLIPTIC OPERATORS , 1997 .

[17]  L. Göttsche Modular forms and Donaldson invariants for 4-manifolds with ₊=1 , 1996 .

[18]  M. Atiyah,et al.  Construction of Instantons , 1978 .

[19]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[20]  Wei-Ping Li,et al.  Vertex operator algebras and the blowup formula for the S-duality conjecture of Vafa and Witten , 1998 .

[21]  Jun Li Algebraic geometric interpretation of Donaldson's polynomial invariants , 1993 .

[22]  G. Ellingsrud,et al.  On the homology of the Hilbert scheme of points in the plane , 1987 .

[23]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[24]  Whitham hierarchies, instanton corrections and soft supersymmetry breaking in N = 2 SU(N) super Yang-Mills theory , 1998, hep-th/9805172.

[25]  H. Nakajima Quiver varieties and Kac-Moody algebras , 1998 .

[26]  Integration over the u-plane in Donaldson theory , 1997, hep-th/9709193.

[27]  R. W. Thomason Une formule de Lefschetz en $K$-théorie équivariante algébrique , 1992 .

[28]  The Donaldson–Witten Function for Gauge Groups of Rank Larger Than One , 1998, hep-th/9802185.

[29]  Stable pairs on curves and surfaces , 1992, alg-geom/9211001.

[30]  Nikita A. Nekrasov Seiberg-Witten prepotential from instanton counting , 2002 .

[31]  J. Bryan Symplectic geometry and the relative Donaldson invariants of , 1997 .

[32]  On blowup formulae for the S-duality conjecture of Vafa and Witten II: the universal functions , 1998, math/9805055.

[33]  J. Morgan Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues , 1993 .

[34]  N. Nekrasov,et al.  Small Instantons, Little Strings and Free Fermions , 2003, hep-th/0302191.

[35]  Wolf Barth,et al.  Moduli of vector bundles on the projective plane , 1977 .

[36]  A. Gorsky,et al.  RG EQUATIONS FROM WHITHAM HIERARCHY , 1998 .

[37]  J. Morgan,et al.  Smooth Four-Manifolds and Complex Surfaces , 1994 .

[38]  M. Atiyah,et al.  The Index of Elliptic Operators: II , 1968 .

[39]  N. Chriss,et al.  Representation theory and complex geometry , 1997 .

[40]  G. Lusztig On Quiver Varieties , 1998 .

[41]  N. Nekrasov,et al.  Testing Seiberg-Witten Solution , 1998, hep-th/9801061.

[42]  The renormalization group equation in N = 2 supersymmetric gauge theories , 1996, hep-th/9610156.

[43]  M. Semenov-Tian-Shansky,et al.  L.D. Faddeev's seminar on mathematical physics , 2000 .

[44]  On the relation between the holomorphic prepotential and the quantum moduli in SUSY gauge theories , 1995, hep-th/9510129.

[45]  G. Lusztig Cuspidal local systems and graded Hecke algebras, I , 1988 .

[46]  H. Nakajima Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .

[47]  M. Atiyah,et al.  Self-duality in four-dimensional Riemannian geometry , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[48]  Nikita Nekrasov,et al.  Issues in topological gauge theory , 1997, hep-th/9711108.

[49]  CHAMBER STRUCTURE OF POLARIZATIONS AND THE MODULI OF STABLE SHEAVES ON A RULED SURFACE , 1994, alg-geom/9409008.

[50]  Lectures on instanton counting , 2003, math/0311058.