Multivariate Skew-Power-Normal Distributions: Properties and Associated Inference

The univariate power-normal distribution is quite useful for modeling many types of real data. On the other hand, multivariate extensions of this univariate distribution are not common in the statistic literature, mainly skewed multivariate extensions that can be bimodal, for example. In this paper, based on the univariate power-normal distribution, we extend the univariate power-normal distribution to the multivariate setup. Structural properties of the new multivariate distributions are established. We consider the maximum likelihood method to estimate the unknown parameters, and the observed and expected Fisher information matrices are also derived. Monte Carlo simulation results indicate that the maximum likelihood approach is quite effective to estimate the model parameters. An empirical application of the proposed multivariate distribution to real data is provided for illustrative purposes.

[1]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[2]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[3]  Heleno Bolfarine,et al.  Skew‐symmetric distributions generated by the distribution function of the normal distribution , 2007 .

[4]  Likelihood-based inference for power distributions , 2012 .

[5]  S. Rocky Durrans,et al.  Distributions of fractional order statistics in hydrology , 1992 .

[6]  B. Arnold,et al.  Conditionally specified multivariate skewed distributions , 2002 .

[7]  A. Pewsey Problems of inference for Azzalini's skewnormal distribution , 2000 .

[8]  G. S. Mudholkar,et al.  The epsilon-skew-normal distribution for analyzing near-normal data , 2000 .

[9]  Arjun K. Gupta,et al.  Multivariate skew-symmetric distributions , 2003, Appl. Math. Lett..

[10]  R. Arellano-Valle,et al.  On the Unification of Families of Skew‐normal Distributions , 2006 .

[11]  F. Chang,et al.  Some skew-symmetric models , 2002 .

[12]  The multivariate alpha-power model , 2013 .

[13]  Ramesh C. Gupta,et al.  Analyzing skewed data by power normal model , 2008 .

[14]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[15]  Arjun K. Gupta,et al.  Quadratic forms in skew normal variates , 2002 .

[16]  N. Henze A Probabilistic Representation of the 'Skew-normal' Distribution , 1986 .

[17]  Generalized skew-normal models: properties and inference , 2006 .

[18]  M. Pešta Total least squares and bootstrapping with applications in calibration , 2013 .

[19]  Monica Chiogna,et al.  A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution , 2005, Stat. Methods Appl..

[20]  R. Arellano-Valle,et al.  The centred parametrization for the multivariate skew-normal distribution , 2008 .

[21]  José A. Villaseñor Alva,et al.  A Generalization of Shapiro–Wilk's Test for Multivariate Normality , 2009 .

[22]  Adelchi Azzalini,et al.  The Skew-Normal and Related Families , 2018 .

[23]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[24]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[25]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[26]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[27]  P. Embrechts Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005 .

[28]  Arjun K. Gupta,et al.  A class of multivariate skew-normal models , 2004 .

[29]  Bimodal symmetric-asymmetric power-normal families , 2018 .

[30]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[31]  M. Genton,et al.  On fundamental skew distributions , 2005 .

[32]  M. Kendall Theoretical Statistics , 1956, Nature.