STUDIES OF THE JET IN BL LACERTAE. I. RECOLLIMATION SHOCK AND MOVING EMISSION FEATURES

Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cluster around an axis at a position angle of −166.°6 that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical two-dimensional relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock (RCS). Because of this, and the close analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as an RCS. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model, the beam has Lorentz factor in the frame of the host galaxy and the fast mode wave has Lorentz factor in the frame of the beam. This gives a maximum apparent speed for the moving features, βapp = vapp/c = 10. In this model the Lorentz factor of the pattern in the galaxy frame is approximately three times larger than that of the beam itself.

[1]  D. Meier,et al.  Linking accretion flow and particle acceleration in jets – II. Self-similar jet models with full relativistic MHD gravitational mass , 2013, 1311.5554.

[2]  M. Lister,et al.  Evidence for a large-scale helical magnetic field in the quasar 3C 454.3 , 2013 .

[3]  K. I. Kellermann,et al.  MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI , 2013, 1308.2713.

[4]  H. Monteiro,et al.  Parsec-scale jet precession in BL Lacertae (2200+420) , 2012, 1210.2286.

[5]  D. Meier,et al.  Linking accretion flow and particle acceleration in jets – I. New relativistic magnetohydrodynamical jet solutions including gravity , 2012, 1209.4920.

[6]  M. Lister,et al.  The Innermost Regions of Relativistic Jets and Their Magnetic Fields The Innermost Regions of Relativistic Jets and Their Magnetic Fields , 2013 .

[7]  D. Meier Black Hole Astrophysics: The Engine Paradigm , 2012 .

[8]  D. N. Okhmat,et al.  REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES , 2012, 1206.6523.

[9]  C. Casadio,et al.  A RECOLLIMATION SHOCK 80 mas FROM THE CORE IN THE JET OF THE RADIO GALAXY 3C 120: OBSERVATIONAL EVIDENCE AND MODELING , 2012, 1203.2788.

[10]  D. Meier Black Hole Astrophysics: The Engine Paradigm , 2012 .

[11]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[12]  O. Titov,et al.  ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES , 2011, 1103.3963.

[13]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[14]  R. Zavala,et al.  ARE THERE ROTATION MEASURE GRADIENTS ACROSS ACTIVE GALACTIC NUCLEI JETS? , 2010, 1009.3465.

[15]  D. Meier,et al.  DETERMINING THE OPTIMAL LOCATIONS FOR SHOCK ACCELERATION IN MAGNETOHYDRODYNAMICAL JETS , 2010, 1009.3031.

[16]  E. Ros,et al.  VLBI detection of the HST-1 feature in the M 87 jet at 2 cm , 2010, 1002.2588.

[17]  Observational evidence for the link between the variable optical continuum and the subparsec-scale jet of the radio galaxy 3C 390.3 , 2009, 0909.2679.

[18]  C. Tateyama STUDY OF BL Lac VLBA DATA AT 8 AND 15 GHz IN A SUPER-RESOLUTION MODE , 2009 .

[19]  M. Lister,et al.  Jet opening angles and gamma-ray brightness of AGN , 2009, 0910.1813.

[20]  Relativistic plasma as the dominant source of the optical continuum emission in the broad-line radio galaxy 3C 120 , 2009, 0910.1320.

[21]  S. O’Sullivan,et al.  Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets , 2009, 0907.5211.

[22]  A. Lahteenmaki,et al.  Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies , 2008, 0811.4278.

[23]  S. O’Sullivan,et al.  Three-dimensional magnetic field structure of six parsec-scale active galactic nuclei jets , 2008, 0811.4426.

[24]  A. Levinson,et al.  RECOLLIMATION AND RADIATIVE FOCUSING OF RELATIVISTIC JETS: APPLICATIONS TO BLAZARS AND M87 , 2008, 0810.0562.

[25]  A. Marscher,et al.  Faraday Rotation and Polarization Gradients in the Jet of 3C 120: Interaction with the External Medium and a Helical Magnetic Field? , 2008, 0805.4797.

[26]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[27]  M. Inoue,et al.  Time Variation of the Rotation Measure Gradient in the 3C 273 Jet , 2008, 0806.4231.

[28]  A. Lobanov,et al.  Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies , 2008, 0802.2970.

[29]  D. E. Harris,et al.  Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission , 2007, 0705.2448.

[30]  M. Cohen,et al.  ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 RELATIVISTIC BEAMING AND THE INTRINSIC PROPERTIES OF EXTRAGALACTIC RADIO JETS , 2006 .

[31]  Bonn,et al.  Structure and flux variability in the VLBI jet of BL Lacertae during the WEBT campaigns (1995-2004) , 2006, astro-ph/0606050.

[32]  F. Aharonian,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006, astro-ph/0602220.

[33]  Helsinki University of Technology,et al.  Multifrequency VLBA monitoring of 3C 273 during the INTEGRAL Campaign in 2003 - I. Kinematics of the parsec scale jet from 43 GHz data , 2005, astro-ph/0509623.

[34]  Cosmology,et al.  Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C 273 , 2005, astro-ph/0505357.

[35]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[36]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[37]  S. Paltani,et al.  The Mass of the black hole in 3C 273 , 2005, astro-ph/0502296.

[38]  G. Denn,et al.  IS THE RADIO CORE OF BL LACERTAE PRECESSING , 2004, astro-ph/0412496.

[39]  M. Lyutikov,et al.  Polarization and structure of relativistic parsec-scale AGN jets , 2004, astro-ph/0406144.

[40]  D. Gabuzda,et al.  Helical magnetic fields associated with the relativistic jets of four BL Lac objects , 2004, astro-ph/0405394.

[41]  Paul S. Smith,et al.  Discovery of a precessing jet nozzle in BL Lacertae , 2003 .

[42]  N. Vlahakis,et al.  Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions , 2003, astro-ph/0303482.

[43]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[44]  S. Iguchi,et al.  A Helical Magnetic Field in the jet of 3C 273(Session 1:Astrophysical Jets,High-Energy Emission from Accreting Compact Objects,Korea-Japan Seminar) , 2002, astro-ph/0205497.

[45]  A. Treves,et al.  The Black Hole Mass of BL Lacertae Objects from the Stellar Velocity Dispersion of the Host Galaxy , 2002, astro-ph/0203199.

[46]  R. Zavala,et al.  Faraday Rotation Measures in the Parsec-Scale Jets of the Radio Galaxies M87, 3C 111, and 3C 120 , 2002, astro-ph/0201458.

[47]  M. Krause,et al.  Reliability of astrophysical jet simulations in 2D. On inter-code reliability and numerical convergence , 2001, astro-ph/0110485.

[48]  A. Marscher,et al.  Monthly 43 GHz VLBA Polarimetric Monitoring of 3C 120 over 16 Epochs: Evidence for Trailing Shocks in a Relativistic Jet , 2001, astro-ph/0110133.

[49]  T. Venturi,et al.  Very Long Baseline Array Polarimetry of Three Powerful Radio Galaxy Cores , 2001, astro-ph/0105285.

[50]  A. Pushkarev,et al.  Analysis of λ = 6 cm VLBI polarization observations of a complete sample of northern BL Lacertae objects , 2000, astro-ph/0307192.

[51]  K. Tsinganos,et al.  A disc-wind model with correct crossing of all magnetohydrodynamic critical surfaces , 2000, astro-ph/0005582.

[52]  S. Komissarov Numerical simulations of relativistic magnetized jets , 1999 .

[53]  M. Malkan,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999, astro-ph/9905224.

[54]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[55]  M. Lister,et al.  Statistical Effects of Doppler Beaming and Malmquist Bias on Flux-limited Samples of Compact Radio Sources , 1997 .

[56]  T. Chiueh,et al.  Electromagnetically Driven Relativistic Jets: A Class of Self-similar Solutions , 1992 .

[57]  R. Blandford,et al.  Numerical simulations of magnetized jets , 1989 .

[58]  M. Aller,et al.  Synchrotron Emission from Shocked Relativistic Jets. II. A Model for the Centimeter Wave Band Quiescent and Burst Emission from BL Lacertae , 1989 .

[59]  Michael L. Norman,et al.  Numerical Simulations of a Magnetically Confined Jet , 1986 .

[60]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .