Non-binary irreducible quasi-cyclic parity-check subcodes of Goppa codes and extended Goppa codes

Goppa codes are particularly appealing for cryptographic applications. Every improvement of our knowledge of Goppa codes is of particular interest. In this paper, we present a sufficient and necessary condition for an irreducible monic polynomial $g(x)$ of degree $r$ over $\mathbb{F}_{q}$ satisfying $\gamma g(x)=(x+d)^rg({A}(x))$, where $q=2^n$, $A=\left(\begin{array}{cc} a&b\\1&d\end{array}\right)\in PGL_2(\Bbb F_{q})$, $\mathrm{ord}(A)$ is a prime, $g(a)\ne 0$, and $0\ne \gamma\in \Bbb F_q$. And we give a complete characterization of irreducible polynomials $g(x)$ of degree $2s$ or $3s$ as above, where $s$ is a positive integer. Moreover, we construct some binary irreducible quasi-cyclic parity-check subcodes of Goppa codes and extended Goppa codes.

[1]  Thierry P. Berger,et al.  Reducing Key Length of the McEliece Cryptosystem , 2009, AFRICACRYPT.

[2]  Grégoire Bommier,et al.  Binary Quasi-Cyclic Goppa Codes , 2000, Des. Codes Cryptogr..

[3]  Thierry P. Berger Goppa and related codes invariant under a prescribed permutation , 2000, IEEE Trans. Inf. Theory.

[4]  Jean-Charles Faugère,et al.  Folding Alternant and Goppa Codes With Non-Trivial Automorphism Groups , 2014, IEEE Transactions on Information Theory.

[5]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[6]  Edoardo Persichetti,et al.  Compact McEliece keys based on quasi-dyadic Srivastava codes , 2012, J. Math. Cryptol..

[7]  Patrick Fitzpatrick,et al.  Quasicyclic irreducible Goppa codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[8]  Paulo S. L. M. Barreto,et al.  Compact McEliece Keys from Goppa Codes , 2009, IACR Cryptol. ePrint Arch..

[9]  D. R. Hughes Collineation Groups of Non-Desarguesian Planes, I: The Hall Veblen-Wedderburn Systems , 1959 .

[10]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[11]  Elwyn R. Berlekamp,et al.  On the Solution of Algebraic Equations over Finite Fields , 1967, Inf. Control..

[12]  T. Berger On the Cyclicity of Goppa Codes, Parity-Check Subcodes of Goppa Codes, and Extended Goppa Codes , 2000 .

[13]  Philippe Gaborit,et al.  Shorter keys for code-based cryptography , 2005 .

[14]  Paulo S. L. M. Barreto,et al.  Monoidic Codes in Cryptography , 2011, PQCrypto.