Attractor as a convex combination of a set of attractors

[1]  Nikolay V. Kuznetsov,et al.  The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension , 2020, Nonlinear Dynamics.

[2]  Nikolay V. Kuznetsov,et al.  Parameter Switching Synchronization , 2016, Appl. Math. Comput..

[3]  Marius-F. Danca,et al.  Emulating "Chaos + Chaos = Order" in Chen's Circuit of Fractional Order by Parameter Switching , 2016, Int. J. Bifurc. Chaos.

[4]  Marius-F. Danca,et al.  Hidden transient chaotic attractors of Rabinovich–Fabrikant system , 2016, 1604.04055.

[5]  Marius-F. Danca,et al.  Chaos control of Hastings-Powell model by combining chaotic motions. , 2016, Chaos.

[6]  Marius-F. Danca,et al.  Note on a parameter switching method for nonlinear ODEs , 2016, 1602.02489.

[7]  Marius-F. Danca,et al.  Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control , 2014, Int. J. Bifurc. Chaos.

[8]  Marius-F. Danca,et al.  Parameter switching in a generalized Duffing system: Finding the stable attractors , 2013, Appl. Math. Comput..

[9]  Marius-F. Danca Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox , 2013, Commun. Nonlinear Sci. Numer. Simul..

[10]  Marius-F. Danca,et al.  Parrondo's Game Model to Find numerically Stable attractors of a Tumor Growth Model , 2012, Int. J. Bifurc. Chaos.

[11]  Marius-F. Danca,et al.  An averaging model for chaotic system with periodic time-varying parameter , 2010, Appl. Math. Comput..

[12]  Lars Grüne,et al.  Attraction Rates, Robustness, and Discretization of Attractors , 2003, SIAM J. Numer. Anal..

[13]  Ciprian Foias,et al.  On the numerical algebraic approximation of global attractors , 1995 .