Attractor as a convex combination of a set of attractors
暂无分享,去创建一个
Nikolay V. Kuznetsov | Guanrong Chen | Marius-F. Danca | Michal Feckan | Guanrong Chen | Marius-F. Danca | N. Kuznetsov | Michal Feckan
[1] Nikolay V. Kuznetsov,et al. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension , 2020, Nonlinear Dynamics.
[2] Nikolay V. Kuznetsov,et al. Parameter Switching Synchronization , 2016, Appl. Math. Comput..
[3] Marius-F. Danca,et al. Emulating "Chaos + Chaos = Order" in Chen's Circuit of Fractional Order by Parameter Switching , 2016, Int. J. Bifurc. Chaos.
[4] Marius-F. Danca,et al. Hidden transient chaotic attractors of Rabinovich–Fabrikant system , 2016, 1604.04055.
[5] Marius-F. Danca,et al. Chaos control of Hastings-Powell model by combining chaotic motions. , 2016, Chaos.
[6] Marius-F. Danca,et al. Note on a parameter switching method for nonlinear ODEs , 2016, 1602.02489.
[7] Marius-F. Danca,et al. Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control , 2014, Int. J. Bifurc. Chaos.
[8] Marius-F. Danca,et al. Parameter switching in a generalized Duffing system: Finding the stable attractors , 2013, Appl. Math. Comput..
[9] Marius-F. Danca. Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox , 2013, Commun. Nonlinear Sci. Numer. Simul..
[10] Marius-F. Danca,et al. Parrondo's Game Model to Find numerically Stable attractors of a Tumor Growth Model , 2012, Int. J. Bifurc. Chaos.
[11] Marius-F. Danca,et al. An averaging model for chaotic system with periodic time-varying parameter , 2010, Appl. Math. Comput..
[12] Lars Grüne,et al. Attraction Rates, Robustness, and Discretization of Attractors , 2003, SIAM J. Numer. Anal..
[13] Ciprian Foias,et al. On the numerical algebraic approximation of global attractors , 1995 .