A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations

We develop a fast sweeping method for static Hamilton–Jacobi equations with convex Hamiltonians. Local solvers and fast sweeping strategies apply to structured and unstructured meshes. With causality correctly enforced during sweepings numerical evidence indicates that the fast sweeping method converges in a finite number of iterations independent of mesh size. Numerical examples validate both the accuracy and the efficiency of the new method.

[1]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[2]  Alper Yilmaz,et al.  Level Set Methods , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[3]  Joe Dellinger,et al.  A Full-aperture Anisotropic Eikonal Solver For Quasi-P Traveltimes , 2001 .

[4]  Zhao,et al.  PARALLEL IMPLEMENTATIONS OF THE FAST SWEEPING METHOD , 2007 .

[5]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[6]  Jianliang Qian,et al.  Adaptive nite dierence method for traveltime and amplitude , 1999 .

[7]  Jianliang Qian,et al.  Adaptive Finite Difference Method For Traveltime And Amplitude , 1999 .

[8]  W. Symes,et al.  Paraxial eikonal solvers for anisotropic quasi-P travel times , 2001 .

[9]  Hongkai Zhao,et al.  Fixed-point iterative sweeping methods for static hamilton-Jacobi Equations , 2006 .

[10]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Hybrid Control , 2002, HSCC.

[11]  W. Symes,et al.  A paraxial formulation for the viscosity solution of quasi-P eikonal equations , 2003 .

[12]  Aihui Zhou,et al.  A sparse finite element method with high accuracy Part I , 2001, Numerische Mathematik.

[13]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[14]  Heng Yu,et al.  A second-order accurate, component-wise TVD scheme for nonlinear, hyperbolic conservation laws , 2001 .

[15]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[16]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[17]  Hongkai Zhao,et al.  High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations , 2006, J. Sci. Comput..

[18]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[19]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[20]  Jianliang Qian,et al.  An adaptive finite-difference method for traveltimes and amplitudes , 2002 .

[21]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[22]  P. Dupuis,et al.  Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[23]  Jianliang Qian,et al.  Paraxial geometrical optics for quasi-P waves: theories and numerical methods , 2002 .

[24]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[25]  R. González,et al.  On deterministic control problems: An approximation procedure for the optimal cost , 1983, The 22nd IEEE Conference on Decision and Control.

[26]  Stanley Osher,et al.  Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension , 2006, J. Comput. Phys..

[27]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[28]  W. Symes,et al.  Anisotropic finite‐difference traveltimes using a Hamilton‐Jacobi solver , 1997 .

[29]  Chi-Tien Lin,et al.  $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.

[30]  Douglas E. Miller,et al.  Multiparameter inversion in anisotropic elastic media , 1998 .

[31]  Gerard T. Schuster,et al.  First‐arrival traveltime calculation for anisotropic media , 1993 .

[32]  M. Tu,et al.  Structural and magnetic characterization of Gd5Si3.5−xGexSn0.5 alloys , 2006 .

[33]  W. Symes,et al.  Finite‐difference quasi‐P traveltimes for anisotropic media , 2001 .

[34]  Hongkai Zhao,et al.  Fast Sweeping Methods for Eikonal Equations on Triangular Meshes , 2007, SIAM J. Numer. Anal..

[35]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[36]  Christopher M. Kuster,et al.  Computational Study of Fast Methods for the Eikonal Equation , 2005, SIAM J. Sci. Comput..

[37]  Jianliang Qian,et al.  An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals , 2006 .

[38]  William W. Symes,et al.  Upwind finite-difference calculation of traveltimes , 1991 .

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  R. González,et al.  On Deterministic Control Problems: An Approximation Procedure for the Optimal Cost I. The Stationary Problem , 1985 .

[41]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .