Computational dissection of Arabidopsis smRNAome leads to discovery of novel microRNAs and short interfering RNAs associated with transcription start sites.

The profiling of small RNAs by high-throughput sequencing (smRNA-Seq) has revealed the complexity of the RNA world. Here, we describe a computational scheme for dissecting the plant smRNAome by integrating smRNA-Seq datasets in Arabidopsis thaliana. Our analytical approach first defines ab initio the genomic loci that produce smRNAs as basic units, then utilizes principal component analysis (PCA) to predict novel miRNAs. Secondary structure prediction of candidates' putative precursors discovered a group of long hairpin double-stranded RNAs (lh-dsRNAs) formed by inverted duplications of decayed coding genes. These gene remnants produce miRNA-like small RNAs which are predominantly 21- and 22-nt long, dependent of DCL1 but independent of RDR2 and DCL2/3/4, and associated with AGO1. Additionally, we found two classes of transcription start site associated (TSSa) RNAs located at sense (+) and antisense (-) approximately 100-200 bp downstream of TSSs, but are differentially incorporated into AGO1 and AGO4, respectively.

[1]  Oliver H. Tam,et al.  Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes , 2008, Nature.

[2]  P. Stadler,et al.  RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription , 2007, Science.

[3]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[4]  Adam M. Gustafson,et al.  microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants , 2005, Cell.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Jason S. Cumbie,et al.  Genome-Wide Profiling and Analysis of Arabidopsis siRNAs , 2007, PLoS biology.

[7]  Darren J Obbard,et al.  RNA Interference: Endogenous siRNAs Derived from Transposable Elements , 2008, Current Biology.

[8]  Gregory J. Hannon,et al.  Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide , 2008, Cell.

[9]  K. Morris,et al.  Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells , 2007, Proceedings of the National Academy of Sciences.

[10]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[11]  Pamela J. Green,et al.  Role of RNA polymerase IV in plant small RNA metabolism , 2007, Proceedings of the National Academy of Sciences.

[12]  I. Henderson,et al.  Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning , 2006, Nature Genetics.

[13]  Markus Ringnér,et al.  What is principal component analysis? , 2008, Nature Biotechnology.

[14]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[15]  D. Zilberman,et al.  RNA Silencing Genes Control de Novo DNA Methylation , 2004, Science.

[16]  E. H. Wilson Origin , 1927, Bulletin of popular information - Arnold Arboretum, Harvard University..

[17]  Gi-Ho Sung,et al.  Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana , 2004, Nature Genetics.

[18]  Adam M. Gustafson,et al.  Genetic and Functional Diversification of Small RNA Pathways in Plants , 2004, PLoS biology.

[19]  H. Vaucheret,et al.  Transcriptional gene silencing in plants: targets, inducers and regulators. , 2001, Trends in genetics : TIG.

[20]  Tyler W. H. Backman,et al.  Computational and analytical framework for small RNA profiling by high-throughput sequencing. , 2009, RNA.

[21]  R. Martienssen,et al.  RNA Interference Guides Histone Modification during the S Phase of Chromosomal Replication , 2008, Current Biology.

[22]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[23]  X. Liu,et al.  Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize[W] , 2009, The Plant Cell Online.

[24]  A. Riggs,et al.  The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. , 2005, RNA.

[25]  Hsien-Da Huang,et al.  miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression , 2009, BMC Bioinformatics.

[26]  I. Henderson,et al.  Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. , 2008, Genes & development.

[27]  D. Bartel,et al.  Criteria for Annotation of Plant MicroRNAs , 2008, The Plant Cell Online.

[28]  H. Vaucheret,et al.  Plant ARGONAUTES. , 2008, Trends in plant science.

[29]  C. Pikaard,et al.  Noncoding Transcription by RNA Polymerase Pol IVb/Pol V Mediates Transcriptional Silencing of Overlapping and Adjacent Genes , 2008, Cell.

[30]  William Ritchie,et al.  Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans , 2010, Nature Structural &Molecular Biology.

[31]  K. Morris,et al.  Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells , 2009, Nucleic acids research.

[32]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[33]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[34]  O. Voinnet Origin, Biogenesis, and Activity of Plant MicroRNAs , 2009, Cell.

[35]  Xiaofeng Cao,et al.  ARGONAUTE4 Control of Locus-Specific siRNA Accumulation and DNA and Histone Methylation , 2003, Science.

[36]  Kan Nobuta,et al.  Distinct size distribution of endogenous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant , 2008, Proceedings of the National Academy of Sciences.

[37]  B. Reinhart,et al.  MicroRNAs in plants. , 2002, Genes & development.

[38]  Franck Vazquez,et al.  Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. , 2004, Molecular cell.

[39]  O. Borsani,et al.  Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis , 2005, Cell.

[40]  Gang Xu,et al.  mirTools: microRNA profiling and discovery based on high-throughput sequencing , 2010, Nucleic Acids Res..

[41]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[42]  Ana M. Aransay,et al.  miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments , 2009, Nucleic Acids Res..

[43]  C. Pikaard,et al.  Roles of RNA polymerase IV in gene silencing. , 2008, Trends in plant science.

[44]  Stefan R. Henz,et al.  A gene expression map of Arabidopsis thaliana development , 2005, Nature Genetics.

[45]  C. Pikaard,et al.  Plant Nuclear RNA Polymerase IV Mediates siRNA and DNA Methylation-Dependent Heterochromatin Formation , 2005, Cell.

[46]  Hui Zhou,et al.  deepBase: a database for deeply annotating and mining deep sequencing data , 2009, Nucleic Acids Res..

[47]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[48]  J. Kawai,et al.  Tiny RNAs associated with transcription start sites in animals , 2009, Nature Genetics.

[49]  Chi-Ching Lee,et al.  DSAP: deep-sequencing small RNA analysis pipeline , 2010, Nucleic Acids Res..

[50]  Olivier Voinnet,et al.  The diversity of RNA silencing pathways in plants. , 2006, Trends in genetics : TIG.

[51]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.