Split-step finite-element method applied to nonlinear integrated optics

A useful numerical simulation technique is presented to solve nonlinear guided-wave problems in a planar or coaxial optical waveguide. This technique is a combination of the finite-element method and the finite-difference method. The former is applied to the waveguide cross section (xy or rθ plane), whereas the latter is applied to the propagation direction (z axis). With the split-step procedure a significant enhancement of computational efficiency is achievable. The usefulness of the present approach is demonstrated through a number of numerical examples, some of which are displayed here.

[1]  M. Feit,et al.  Simple spectral method for solving propagation problems in cylindrical geometry with fast Fourier transforms. , 1989, Optics letters.

[2]  R. Stolen,et al.  Materials for nonlinear optical waveguides , 1989 .

[3]  R. Dragila,et al.  Hybrid TE-TM nonlinear guided waves. , 1989, Optics letters.

[4]  M. Koshiba,et al.  Nonlinear beam propagation in tapered waveguides , 1989 .

[5]  J. B. Davies,et al.  Finite element/finite difference propagation algorithm for integrated optical device , 1989 .

[6]  George I. Stegeman,et al.  Waveguides and Fibers for Nonlinear Optics , 1989, Nonlinear Optical Properties of Materials.

[7]  David Yevick,et al.  Split-step finite difference analysis of rib waveguides , 1989 .

[8]  Masanori Koshiba,et al.  Numerical simulation of guided-wave SHG light sources utilising Cerenkov radiation scheme , 1989 .

[9]  Boardman,et al.  Transverse-electric and transverse-magnetic waves in nonlinear isotropic waveguides. , 1989, Physical review. A, General physics.

[10]  M. Koshiba,et al.  Self-focusing instability and chaotic behavior of nonlinear optical waves guided by dielectric slab structures. , 1988, Optics Letters.

[11]  N. Okamoto,et al.  Nonlinear TE waves in an optically nonlinear curved waveguide and pulse compression , 1988 .

[12]  D. Wood,et al.  Analysis of the nonlinear coaxial coupler , 1988 .

[13]  Stuart N. Radcliffe,et al.  New low-loss bend structures for high-density integrated optical switch arrays , 1988, IEEE J. Sel. Areas Commun..

[14]  Masanori Koshiba,et al.  Finite-element formalism for nonlinear slab-guided waves , 1988 .

[15]  George I. Stegeman,et al.  Third order nonlinear integrated optics , 1988 .

[16]  A. Boardman,et al.  Theory of nonlinear interaction between TE and TM waves , 1988 .

[17]  C. Wächter,et al.  Evolution of nonlinear guided optical fields down a dielectric film with a nonlinear cladding , 1988 .

[18]  Paul Lagasse,et al.  Application of propagating beam methods to electromagnetic and acoustic wave propagation problems: A review , 1987 .

[19]  G. Stegeman,et al.  Numerical study of soliton emission from a nonlinear waveguide , 1987 .

[20]  F. Lederer,et al.  Propagation phenomena of nonlinear film guided waves in a configuration with material losses: a numerical analysis. , 1987, Optics letters.

[21]  G. Stegeman,et al.  Effects of absorption on TE0 nonlinear guided waves , 1987 .

[22]  Stegeman,et al.  Multisoliton emission from a nonlinear waveguide. , 1986, Physical review. A, General physics.

[23]  G. R. Olbright,et al.  Interferometric measurement of the nonlinear index of refraction, n2, of CdSxSe1−x‐doped glasses , 1986 .

[24]  Anthony C. Boucouvalas,et al.  Coaxial optical fiber coupling , 1985 .

[25]  M. Feit,et al.  Light propagation in graded-index optical fibers. , 1978, Applied optics.