Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage.

[1]  F. Pedersen,et al.  Non-identical patterns of proviral insertions around host transcription units in lymphomas induced by different strains of murine leukemia virus. , 2006, Virology.

[2]  K. D. Sørensen,et al.  The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus. , 2006, Virology.

[3]  W. Berdel,et al.  The molecular pathogenesis of acute myeloid leukemia. , 2005, Critical reviews in oncology/hematology.

[4]  J. Dick,et al.  Cancer stem cells: lessons from leukemia. , 2005, Trends in cell biology.

[5]  K. D. Sørensen,et al.  Distinct roles of enhancer nuclear factor 1 (NF1) sites in plasmacytoma and osteopetrosis induction by Akv1-99 murine leukemia virus. , 2005, Virology.

[6]  K. D. Sørensen,et al.  Mutation of All Runx (AML1/Core) Sites in the Enhancer of T-Lymphomagenic SL3-3 Murine Leukemia Virus Unmasks a Significant Potential for Myeloid Leukemia Induction and Favors Enhancer Evolution toward Induction of Other Disease Patterns , 2004, Journal of Virology.

[7]  S. Akira,et al.  Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8 , 2004, Science.

[8]  E. Jaffe Pathology and Genetics: Tumours of Haematopoietic and Lymphoid Tissues , 2003 .

[9]  J. Downing,et al.  Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. , 2002, Blood.

[10]  N. Harris,et al.  Bethesda proposals for classification of lymphoid neoplasms in mice. , 2002, Blood.

[11]  S. Ross,et al.  Murine retroviruses activate B cells via interaction with toll-like receptor 4 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Berg,et al.  World Health Organization Classification of Tumours , 2002 .

[13]  Finn Skou Pedersen,et al.  Murine Leukemia Virus Proviral Insertions between the N-ras and unr Genes in B-Cell Lymphoma DNA Affect the Expression of N-ras Only , 2001, Journal of Virology.

[14]  V. Sementchenko,et al.  Ets target genes: past, present and future , 2000, Oncogene.

[15]  H. Morse,et al.  Accelerated Appearance of Multiple B Cell Lymphoma Types in NFS/N Mice Congenic for Ecotropic Murine Leukemia Viruses , 2000, Laboratory Investigation.

[16]  C. Murre,et al.  Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms , 2000, Molecular and Cellular Biology.

[17]  J. Lenz,et al.  Suppressor Mutations within the Core Binding Factor (CBF/AML1) Binding Site of a T-Cell Lymphomagenic Retrovirus , 1999, Journal of Virology.

[18]  J. Lovmand,et al.  B-Cell Lymphoma Induction by Akv Murine Leukemia Viruses Harboring One or Both Copies of the Tandem Repeat in the U3 Enhancer , 1998, Journal of Virology.

[19]  J. Lenz,et al.  CBF, Myb, and Ets Binding Sites Are Important for Activity of the Core I Element of the Murine Retrovirus SL3-3 in T Lymphocytes , 1998, Journal of Virology.

[20]  J. Gómez Codina,et al.  [Post-transplant lymphoproliferative disorders]. , 1998, Medicina clinica.

[21]  J. Lovmand,et al.  Increased lymphomagenicity and restored disease specificity of AML1 site (core) mutant SL3-3 murine leukemia virus by a second-site enhancer variant evolved in vivo , 1997, Journal of virology.

[22]  J. Lenz,et al.  Importance of a c-Myb binding site for lymphomagenesis by the retrovirus SL3-3 , 1997, Journal of virology.

[23]  T. Grundström,et al.  Second-site proviral enhancer alterations in lymphomas induced by enhancer mutants of SL3-3 murine leukemia virus: negative effect of nuclear factor 1 binding site , 1997, Journal of virology.

[24]  H. Fan,et al.  Leukemogenesis by Moloney murine leukemia virus: a multistep process. , 1997, Trends in microbiology.

[25]  F. Pedersen,et al.  Various modes of basic helix-loop-helix protein-mediated regulation of murine leukemia virus transcription in lymphoid cell lines , 1996, Journal of virology.

[26]  J. Lenz,et al.  Transcriptional activation of a retrovirus enhancer by CBF (AML1) requires a second factor: evidence for cooperativity with c-Myb , 1996, Journal of virology.

[27]  M. Sarzotti,et al.  Induction of Protective CTL Responses in Newborn Mice by a Murine Retrovirus , 1996, Science.

[28]  Miguel Beato,et al.  Steroid hormone receptors: Many Actors in search of a plot , 1995, Cell.

[29]  C. Kozak,et al.  The murine AIDS defective provirus acts as an insertional mutagen in its infected target B cells , 1995, Journal of virology.

[30]  J. Lenz,et al.  Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus , 1995, Journal of virology.

[31]  F. Pedersen,et al.  Basic helix-loop-helix proteins in murine type C retrovirus transcriptional regulation , 1994, Journal of virology.

[32]  N. Copeland,et al.  Susceptibility of AKXD recombinant inbred mouse strains to lymphomas , 1993, Journal of virology.

[33]  Y. Ben-David,et al.  Friend virus-induced erythroleukemia and the multistage nature of cancer , 1991, Cell.

[34]  T. Grundström,et al.  SL3-3 enhancer factor 1 transcriptional activators are required for tumor formation by SL3-3 murine leukemia virus , 1991, Journal of virology.

[35]  T. Grundström,et al.  Binding of SL3-3 enhancer factor 1 transcriptional activators to viral and chromosomal enhancer sequences , 1991, Journal of virology.

[36]  E. Golemis,et al.  Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity. , 1990, Genes & development.

[37]  E. Golemis,et al.  Alignment of U3 region sequences of mammalian type C viruses: identification of highly conserved motifs and implications for enhancer design , 1990, Journal of virology.

[38]  W. Haseltine,et al.  Regulatory elements within the murine leukemia virus enhancer regions mediate glucocorticoid responsiveness , 1988, Journal of virology.

[39]  T. Grundström,et al.  Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3 , 1988, Molecular and cellular biology.

[40]  N. Copeland,et al.  AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas , 1986, Molecular and cellular biology.

[41]  F. Pedersen,et al.  Oncogenic retrovirus from spontaneous murine osteomas. I. Isolation and biological characterization. , 1984, The Journal of general virology.

[42]  J. Lenz,et al.  Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat , 1984, Nature.