Growth of copper–phthalocyanine thin films on mica using a two-stage deposition technique

[1]  Shigeo Fujita,et al.  Surface Treatment of Indium-Tin-Oxide Substrates and Its Effects on Initial Nucleation Processes of Diamine Films , 1997 .

[2]  K. Matsushige,et al.  ANOMALOUS CHANGES IN ELECTRIC CONDUCTIVITY OF CU-PHTHALOCYANINE OBSERVED DURING EVAPORATION PROCESS , 1996 .

[3]  T. Nonaka,et al.  Epitaxial growth of α-copper phthalocyanine crystal on Si(001) substrate by organic molecular beam deposition , 1995 .

[4]  J. Takada,et al.  Copper phthalocyanine‐titanium oxide multilayers , 1994 .

[5]  I. Yamada,et al.  Ionized Cluster Beams: Physics and Technology , 1993 .

[6]  J. Takada,et al.  Organic–inorganic multilayers: A new concept of optoelectronic material , 1992 .

[7]  Forrest,et al.  Evidence for exciton confinement in crystalline organic multiple quantum wells. , 1991, Physical review letters.

[8]  F. A. Smidt Use of ion beam assisted deposition to modify the microstructure and properties of thin films , 1990 .

[9]  K. Müller,et al.  Dependence of thin‐film microstructure on deposition rate by means of a computer simulation , 1985 .

[10]  K. C. Kao,et al.  Electrical Transport in Solids , 1983 .

[11]  P. Knight,et al.  Drift mobility, trapping and photogeneration of charge carriers in β-metal-free phthalocyanine single crystals , 1974 .

[12]  P. Devaux,et al.  Electron drift mobility in copper phtalocyanine single crystals , 1969 .

[13]  M. Ashida The Orientation Overgrowth of Metal-phthalocyanines on the Surface of Single Crystals. I. Vacuum-condensed Films on Muscovite , 1966 .

[14]  N. Uyeda,et al.  Unit Cell Metastable-form Constants of Various Phthalocyanines , 1966 .