Methanol, ethanol, propanol, butanol and glycerol as hydrogen carriers for direct utilization in molten carbonate fuel cells

[1]  M. Atobe,et al.  Diastereoselective Electrocatalytic Hydrogenation of Cyclic Ketones Using a Proton-Exchange Membrane Reactor: A Step toward the Electrification of Fine-Chemical Production , 2023, ACS Energy Letters.

[2]  J. Milewski,et al.  Concept of a solid oxide electrolysis-molten carbonate fuel cell hybrid system to support a power-to-gas installation , 2023, Energy Conversion and Management.

[3]  J. Milewski,et al.  Recycling electronic scrap to make molten carbonate fuel cell cathodes , 2021, International Journal of Hydrogen Energy.

[4]  K. Fung,et al.  Supporting ionic conductivity of Li2CO3/K2CO3 molten carbonate electrolyte by using yttria stabilized zirconia matrix , 2021 .

[5]  J. Milewski,et al.  Numerical Analysis of a Molten Carbonate Fuel Cell Stack in Emergency Scenarios , 2020 .

[6]  Łukasz Szabłowski,et al.  Dynamic model of a molten carbonate fuel cell 1 kW stack , 2020, Energy.

[7]  J. Milewski,et al.  The investigation of cathode layer of Molten Carbonate Fuel Cell manufactured by using printing techniques , 2019 .

[8]  Diego F. Correa,et al.  Towards the implementation of sustainable biofuel production systems , 2019, Renewable and Sustainable Energy Reviews.

[9]  S. Soltanali,et al.  Hydrogen production from steam reforming of methanol over Cu-based catalysts: The behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors , 2019, International Journal of Hydrogen Energy.

[10]  J. Milewski,et al.  Kinetic model of a plate fin heat exchanger with catalytic coating as a steam reformer of methane, biogas, and dimethyl ether , 2019, International Journal of Energy Research.

[11]  J. Czerwinski,et al.  Combustion and Emissions of a Small SI Engine with Buthanol Blend Fuels , 2018, IOP Conference Series: Materials Science and Engineering.

[12]  Prakash D. Vaidya,et al.  Reaction Kinetics of Steam Reforming of n‐Butanol over a Ni/Hydrotalcite Catalyst , 2018 .

[13]  Sanjay Patel,et al.  Renewable hydrogen production from butanol: a review , 2017 .

[14]  Hong Gil Nam,et al.  Biofuel production: Challenges and opportunities , 2017 .

[15]  S. E. Hosseini,et al.  Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development , 2016 .

[16]  C. A. Schwengber,et al.  Overview of glycerol reforming for hydrogen production , 2016 .

[17]  Siti Kartom Kamarudin,et al.  Membranes for direct ethanol fuel cells: An overview , 2016 .

[18]  Zhen Chen,et al.  Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel. , 2015, Bioresource technology.

[19]  C. Au,et al.  H2 production from catalytic steam reforming of n-propanol over ruthenium and ruthenium-nickel bimetallic catalysts supported on ceria-alumina oxides with different ceria loadings , 2015 .

[20]  A. Yaroslavtsev,et al.  Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming , 2015 .

[21]  E. Boles,et al.  Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. , 2015, Current opinion in biotechnology.

[22]  M. Soria,et al.  Challenges and strategies for optimization of glycerol steam reforming process , 2015 .

[23]  R. Comelli,et al.  Hydrogen production by glycerol steam-reforming over nickel and nickel-cobalt impregnated on alumina , 2014 .

[24]  Jingguang G. Chen,et al.  Reaction Pathways of Propanal and 1-Propanol on Fe/Ni(111) and Cu/Ni(111) Bimetallic Surfaces , 2014 .

[25]  N. Homs,et al.  H2 production from oxidative steam reforming of 1-propanol and propylene glycol over yttria-stabilized supported bimetallic Ni–M (M = Pt, Ru, Ir) catalysts , 2014 .

[26]  Yongchen Song,et al.  Activity of Ni–Cu–Al based catalyst for renewable hydrogen production from steam reforming of glycerol , 2014 .

[27]  Christian J. R. Coronado,et al.  Glycerol: Production, consumption, prices, characterization and new trends in combustion , 2013 .

[28]  Wan Ramli Wan Daud,et al.  Review: Direct ethanol fuel cells , 2013 .

[29]  N. Homs,et al.  Hydrogen production from oxidative steam-reforming of n-propanol over Ni/Y2O3–ZrO2 catalysts , 2012 .

[30]  Liangliang,et al.  Single passive direct methanol fuel cell supplied with pure methanol , 2011 .

[31]  Siti Kartom Kamarudin,et al.  Hydrogen production by methanol‐steam reforming using NiMoCu/γ‐alumina trimetallic catalysts , 2010 .

[32]  Shengping Wang,et al.  Hydrogen production by glycerol steam reforming with in situ hydrogen separation: a thermodynamic investigation , 2010 .

[33]  Adélio Mendes,et al.  Catalysts for methanol steam reforming—A review , 2010 .

[34]  A. Adesina,et al.  Glycerol Steam Reforming over Bimetallic Co−Ni/Al2O3 , 2010 .

[35]  R. Comelli,et al.  Hydrogen production from glycerol on Ni/Al2O3 catalyst , 2010 .

[36]  T. Matsui,et al.  Ethanol steam reforming over Ni-based spinel oxide , 2010 .

[37]  Ulrich Eberle,et al.  Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.

[38]  Paul T. Williams,et al.  Hydrogen production by sorption-enhanced steam reforming of glycerol. , 2009, Bioresource technology.

[39]  Xun Hu,et al.  Investigation of the Effects of Molecular Structure on Oxygenated Hydrocarbon Steam Re-forming , 2009 .

[40]  F. Frusteri,et al.  Hydrogen from oxygenated solvents by steam reforming on Ni/Al2O3 catalyst , 2008 .

[41]  L. Nielsen,et al.  Fermentative butanol production by clostridia , 2008, Biotechnology and bioengineering.

[42]  S. Adhikari,et al.  Hydrogen production from glycerin by steam reforming over nickel catalysts , 2008 .

[43]  Robert L. Arechederra,et al.  Development of glycerol/O2 biofuel cell , 2007 .

[44]  D. Leung,et al.  A review on reforming bio-ethanol for hydrogen production , 2007 .

[45]  S. Gwaltney,et al.  A thermodynamic analysis of hydrogen production by steam reforming of glycerol , 2007 .

[46]  J. A. Calles,et al.  Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts , 2007 .

[47]  J. Fierro,et al.  Ethanol steam reforming over Ni/MxOy–Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production , 2007 .

[48]  A. L. Alberton,et al.  Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts , 2007 .

[49]  Ryuji Kikuchi,et al.  Thermodynamic evaluation of methanol steam reforming for hydrogen production , 2006 .

[50]  Agus Haryanto,et al.  Current status of hydrogen production techniques by steam reforming of ethanol : A review , 2005 .

[51]  M. Laborde,et al.  Bio-ethanol steam reforming on Ni/Al2O3 catalyst , 2004 .

[52]  Frank A. Coutelieris,et al.  Electricity from ethanol fed SOFCs: the expectations for sustainable development and technological benefits , 2004 .

[53]  T. Nakajima,et al.  TPR studies on steam reforming of 2-propanol on Rh/Al2O3, Ru/Al2O3 and Pd/Al2O3 , 2003 .

[54]  Eugene S. Smotkin,et al.  Methanol crossover in direct methanol fuel cells: a link between power and energy density , 2002 .

[55]  Sanjay Patel,et al.  Challenges in the Production of Hydrogen from Glycerol – A Biodiesel Byproduct Via Steam Reforming Process , 2013 .

[56]  G. Nahar,et al.  Thermodynamics of hydrogen production by the steam reforming of butanol: Analysis of inorganic gases and light hydrocarbons , 2010 .

[57]  Suttichai Assabumrungrat,et al.  Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ : The possible use of these fuels in internal reforming SOFC , 2007 .

[58]  Sandy Merino,et al.  Progress and challenges in enzyme development for biomass utilization. , 2007, Advances in biochemical engineering/biotechnology.

[59]  L. Alemany,et al.  Production of hydrogen by steam reforming of C3 organics over Pd–Cu/γ-Al2O3 catalyst , 2006 .

[60]  Wan Ramli Wan Daud,et al.  Hydrogen production from steam–methanol reforming: thermodynamic analysis , 2000 .

[61]  Jens R. Rostrup-Nielsen,et al.  Catalytic Steam Reforming , 1984 .

[62]  Siming You,et al.  Statistical optimization of hydrogen production from bio-methanol steam reforming over Ni-Cu/Al2O3 catalysts , 2022, Fuel.