H2-OPTIMAL SAMPLED-DATA CONTROL FOR PLANTS WITH MULTIPLE INPUT AND OUTPUT DELAYS

The sampled-data H2-optimization problem for plants with multiple input and output delays is considered. An equivalent discretetime system is constructed and numerical algorithm for computing matrices of its state-space realization is presented. It is proved that stability of this system is equivalent to stability of original sampleddata system. The proposed method can be applied to a wide class of digital control problems for continuous-time plants with multiple input and output delays.

[1]  K. Yu. Polyakov,et al.  Polynomial Design of Optimal Sampled-Data Tracking Systems: II. Robust Optimization , 2001 .

[2]  M. Mahmoud Robust Control and Filtering for Time-Delay Systems , 2000 .

[3]  Shinji Hara,et al.  A hybrid state-space approach to sampled-data feedback control , 1994 .

[4]  Tomomichi Hagiwara,et al.  FR-operator approach to the H2 analysis and synthesis of sampled-data systems , 1995, IEEE Trans. Autom. Control..

[5]  Yutaka Yamamoto,et al.  A function space approach to sampled data control systems and tracking problems , 1994, IEEE Trans. Autom. Control..

[6]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[7]  Jason Sheng-Hong Tsai,et al.  Digital modeling and hybrid control of sampled-data uncertain system with input time delay using the law of mean , 1999 .

[8]  Pramod P. Khargonekar,et al.  Delayed signal reconstruction using sampled-data control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[9]  Bernhard P. Lampe,et al.  DirectSD - a toolbox for direct design of SD systems , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[10]  Bernhard P. Lampe,et al.  Application of Laplace transformation for digital redesign of continuous control systems , 1999, IEEE Trans. Autom. Control..

[11]  G. E. Taylor,et al.  Computer Controlled Systems: Theory and Design , 1985 .

[13]  Bjorn Wittenmark Sampling of a system with a time delay , 1984, The 23rd IEEE Conference on Decision and Control.

[14]  K.Y. Polyakov,et al.  Optimal design of 2-DOF digital controller for sampled-data tracking systems with preview , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[15]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[16]  Josu Jugo DISCRETIZATION OF CONTINUOUS TIME-DELAY SYSTEMS , 2002 .

[17]  El-Kebir Boukas,et al.  Deterministic and Stochastic Time-Delay Systems , 2002 .

[18]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[19]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[20]  Charles Loan A generalized horner algorithm for computing integrals involving the matrix exponential , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[21]  Bassam Bamieh,et al.  The 2 problem for sampled-data systems , 1992, Systems & Control Letters.

[22]  Bassam Bamieh,et al.  The H 2 problem for sampled-data systems m for sampled-data systems , 1992 .

[23]  Tongwen Chen,et al.  Linear time-varying H2-optimal control of sampled-data systems , 1991, Autom..

[24]  B. Francis,et al.  Optimal Sampled-data Control , 1995 .

[25]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[26]  Bassam Bamieh,et al.  A general framework for linear periodic systems with applications to H/sup infinity / sampled-data control , 1992 .

[27]  Emilia Fridman,et al.  Sampled-data H8 state-feedback control of systems with state delays , 2000 .

[28]  Pramod P. Khargonekar,et al.  H 2 optimal control for sampled-data systems , 1991 .

[29]  K. Yu. Polyakov Polynomial Design of Optimal Sampled-Data Tracking Systems I. Quadratic Optimization , 2001 .

[30]  B. Francis,et al.  H/sub 2/-optimal sampled-data control , 1991 .

[31]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[32]  Bi Zhen H_2-optimal sampled-data control with pole placement constraint , 2000 .

[33]  E. Rosenwasser,et al.  Computer Controlled Systems: Analysis and Design with Process-orientated Models , 2000 .

[34]  Shinji Hara,et al.  Performance lower bound for a sampled-data signal reconstruction , 1999 .

[35]  M. Malek-Zavarei,et al.  Time-Delay Systems: Analysis, Optimization and Applications , 1987 .

[36]  James S. Freudenberg,et al.  Non-pathological sampling for generalized sampled-data hold functions , 1995, Autom..

[37]  Kok Kiong Tan,et al.  Finite-Spectrum Assignment for Time-Delay Systems , 1998 .

[38]  Bengt Lennartson,et al.  Sampled-data control for time-delayed plants , 1989 .

[39]  Cheng-Shion Shieh,et al.  OBSERVER-BASED HYBRID CONTROL OF SAMPLED-DATA UNCERTAIN SYSTEM WITH INPUT TIME DELAY , 1999 .

[40]  Yuehua Wu,et al.  Multirate robust servomechanism controllers of linear delay systems using a hybrid structure , 1994 .

[41]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[42]  D. D. Perlmutter,et al.  Stability of time‐delay systems , 1972 .

[43]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[44]  Bernhard P. Lampe,et al.  Frequency-domain Method for H2 Optimization of Time-delayed Sampled-data Systems , 1997, Autom..

[45]  Bernhard P. Lampe,et al.  Computer Controlled Systems , 2000 .