Single-photon sources: Approaching the ideal through multiplexing.

We review the rapid recent progress in single-photon sources based on multiplexing multiple probabilistic photon-creation events. Such multiplexing allows higher single-photon probabilities and lower contamination from higher-order photon states. We study the requirements for multiplexed sources and compare various approaches to multiplexing using different degrees of freedom.

[1]  Jian-Wei Pan,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[2]  Fabio Sciarrino,et al.  Photonic implementation of boson sampling: a review , 2019, Advanced Photonics.

[3]  H. Herrmann,et al.  Improving SPDC single-photon sources via extended heralding and feed-forward control , 2019, New Journal of Physics.

[4]  A. Lita,et al.  Scalability of parametric down-conversion for generating higher-order Fock states , 2019, Physical Review A.

[5]  Júlia Ferrer Ortas,et al.  Quantum Storage of Single-Photon and Two-Photon Fock States with an All-Optical Quantum Memory. , 2018, Physical review letters.

[6]  Shujing Li,et al.  Multiplexed spin-wave–photon entanglement source using temporal multimode memories and feedforward-controlled readout , 2018, Physical Review A.

[7]  K. F. Lee,et al.  Low-Loss High-Speed Fiber-Optic Switch for Quantum State Manipulation , 2018, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[8]  C. Becher,et al.  Limitations on the indistinguishability of photons from remote solid state sources , 2018, New Journal of Physics.

[9]  W. Pernice,et al.  Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity , 2018 .

[10]  P. Kwiat,et al.  High-efficiency single-photon generation via large-scale active time multiplexing , 2018, Science Advances.

[11]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[12]  Sven Burger,et al.  Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography. , 2017, Nano letters.

[13]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[14]  Philip H. W. Leong,et al.  Indistinguishable heralded single photon generation via relative temporal multiplexing of two sources. , 2017, Optics express.

[15]  M. Pant,et al.  Temporally and spectrally multiplexed single photon source using quantum feedback control for scalable photonic quantum technologies , 2017, New Journal of Physics.

[16]  V. Verma,et al.  Unconditional violation of the shot-noise limit in photonic quantum metrology , 2017, 1707.08977.

[17]  W. Wasilewski,et al.  Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection , 2017, Nature Communications.

[18]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[19]  Peter J. Mosley,et al.  Resource-efficient fibre-integrated temporal multiplexing of heralded single photons , 2017, 1706.01838.

[20]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[21]  P. Humphreys,et al.  Frequency-multiplexed single-photon sources using electro-optic frequency translation , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[22]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[23]  Feihu Xu,et al.  Quantum-memory-assisted multi-photon generation for efficient quantum information processing , 2017, 1704.00879.

[24]  W Tittel,et al.  Heralded Single Photons Based on Spectral Multiplexing and Feed-Forward Control. , 2017, Physical review letters.

[25]  A. Furusawa,et al.  Direct observation of phase-sensitive Hong-Ou-Mandel interference , 2017, 1702.07590.

[26]  Andreas D. Wieck,et al.  Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide , 2017, 1701.08131.

[27]  Christine Silberhorn,et al.  High-Efficiency Plug-and-Play Source of Heralded Single Photons , 2017, 1701.04229.

[28]  Mercedes Gimeno-Segovia,et al.  Relative multiplexing for minimising switching in linear-optical quantum computing , 2017, 1701.03306.

[29]  A. Zeilinger,et al.  Quantum Communication with Photons , 2017, 1701.00989.

[30]  Vahid Sandoghdar,et al.  A single molecule as a high-fidelity photon gun for producing intensity-squeezed light , 2016, Nature Photonics.

[31]  S. Takeuchi,et al.  Realization of multiplexing of heralded single photon sources using photon number resolving detectors. , 2016, Optics express.

[32]  Peter J. Mosley,et al.  All-fiber multiplexed source of high-purity single photons , 2016 .

[33]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[34]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[35]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[36]  P. Adam,et al.  Optimization of periodic single-photon sources based on combined multiplexing , 2016, 1607.02261.

[37]  Yang Wang,et al.  Computing Permanents for Boson Sampling on Tianhe-2 Supercomputer , 2016, National Science Review.

[38]  Sven Ramelow,et al.  Frequency multiplexing for quasi-deterministic heralded single-photon sources , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[39]  Chao Chen,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[40]  Miguel Herrero-Collantes,et al.  Quantum random number generators , 2016, 1604.03304.

[41]  Fumihiro Kaneda,et al.  Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion. , 2016, Optics express.

[42]  James C. Gates,et al.  Chip-based array of near-identical, pure, heralded single-photon sources , 2016, 1603.06984.

[43]  Yu He,et al.  Time-Bin-Encoded Boson Sampling with a Single-Photon Device. , 2016, Physical review letters.

[44]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[45]  Jeremy L O'Brien,et al.  Active temporal and spatial multiplexing of photons , 2016 .

[46]  I. Sagnes,et al.  Scalable performance in solid-state single-photon sources , 2016, 1601.00654.

[47]  G. Vallone,et al.  Heralded single-photon sources for quantum-key-distribution applications , 2015, 1512.01020.

[48]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[49]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[50]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[51]  Christine Silberhorn,et al.  Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics. , 2015, Physical review letters.

[52]  Takeshi Toyama,et al.  Synchronization of optical photons for quantum information processing , 2015, Science Advances.

[53]  Philip H. W. Leong,et al.  Active temporal multiplexing of indistinguishable heralded single photons , 2015, Nature Communications.

[54]  Fumihiro Kaneda,et al.  Time-multiplexed heralded single-photon source , 2015, 1507.06052.

[55]  Wei C. Jiang,et al.  Twin photon pairs in a high-Q silicon microresonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[56]  A. Kalachev,et al.  Optimization of a heralded single-photon source with spatial and temporal multiplexing , 2015 .

[57]  Christine Silberhorn,et al.  Direct generation of genuine single-longitudinal-mode narrowband photon pairs , 2015, 1504.01854.

[58]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[59]  Kartik Srinivasan,et al.  Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission , 2015, Nature Communications.

[60]  Robert J. A. Francis-Jones,et al.  Temporal Loop Multiplexing: A resource efficient scheme for multiplexed photon-pair sources , 2015, 1503.06178.

[61]  A. Gilchrist,et al.  Multiplexed single-photon-state preparation using a fiber-loop architecture , 2015, 1503.03546.

[62]  D. Andrews Photonics, Volume 1: Fundamentals of Photonics and Physics , 2015 .

[63]  A. I. Lvovsky,et al.  5. Squeezed Light , 2015 .

[64]  Damien Bonneau,et al.  Effect of loss on multiplexed single-photon sources , 2014, 1409.5341.

[65]  Peter J. Mosley,et al.  Exploring the limits of multiplexed photon-pair sources for the preparation of pure single-photon states , 2014, 1409.1394.

[66]  Miguel A. Larotonda,et al.  Multiplexing photons with a binary division strategy , 2014 .

[67]  Ingmar Müller,et al.  Metrology of single-photon sources and detectors: a review , 2014 .

[68]  Benjamin J. Eggleton,et al.  Hybrid photonic circuit for multiplexed heralded single photons , 2014, 1402.7202.

[69]  A. Lvovsky Squeezed Light , 2014, A Guide to Experiments in Quantum Optics.

[70]  T D Vo,et al.  Bidirectional multiplexing of heralded single photons from a silicon chip. , 2013, Optics letters.

[71]  Akira Furusawa,et al.  Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function , 2013, 1309.3516.

[72]  Shigeki Takeuchi,et al.  An entanglement-enhanced microscope , 2013, Nature Communications.

[73]  H. Zbinden,et al.  High efficiency coupling of photon pairs in practice. , 2013, Optics express.

[74]  Jonathan P. Dowling,et al.  Spontaneous parametric down-conversion photon sources are scalable in the asymptotic limit for boson sampling , 2013, 1307.8238.

[75]  A. Wieck,et al.  Transform-limited single photons from a single quantum dot , 2013, Nature Communications.

[76]  Alan L. Migdall,et al.  Deterministic generation of single photons via multiplexing repetitive parametric downconversions , 2013 .

[77]  T. Krauss,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature Communications.

[78]  James C. Gates,et al.  High quantum efficiency photon-number-resolving detector for photonic on-chip information processing , 2013, CLEO: 2013.

[79]  Masahide Sasaki,et al.  Widely tunable single photon source with high purity at telecom wavelength. , 2013, Optics express.

[80]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[81]  A. Wieck,et al.  Charge noise and spin noise in a semiconductor quantum device , 2013, Nature Physics.

[82]  M. Ghioni,et al.  An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies , 2012, 1301.2090.

[83]  R. Thew,et al.  On the purity and indistinguishability of down-converted photons , 2012, 1211.0120.

[84]  Paolo Villoresi,et al.  Asymmetric architecture for heralded single-photon sources , 2012, 1210.6878.

[85]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, Nature Photonics.

[86]  W. Kolthammer,et al.  Enhancing multiphoton rates with quantum memories. , 2012, Physical review letters.

[87]  S. Harris,et al.  A miniature ultrabright source of temporally long, narrowband biphotons , 2012 .

[88]  E. Pomarico,et al.  MHz rate and efficient synchronous heralding of single photons at telecom wavelengths. , 2012, Optics express.

[89]  C. Silberhorn,et al.  Limits on the deterministic creation of pure single-photon states using parametric down-conversion , 2011, 1111.4095.

[90]  J. Mower,et al.  Efficient generation of single and entangled photons on a silicon photonic integrated chip , 2011, 1110.3936.

[91]  E. Knill,et al.  Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths. , 2011, Optics express.

[92]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[93]  Hiroshi Fukuda,et al.  Indistinguishable photon pair generation using two independent silicon wire waveguides , 2011 .

[94]  E. Weiss,et al.  A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. , 2011, ACS nano.

[95]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[96]  Andreas Christ,et al.  Highly efficient single-pass source of pulsed single-mode twin beams of light. , 2011, Physical review letters.

[97]  Marco Barbieri,et al.  Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis , 2010, 1012.1868.

[98]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[99]  Christoph Simon,et al.  Temporally multiplexed quantum repeaters with atomic gases , 2010, 1007.5028.

[100]  G Brida,et al.  Experimental realization of a low-noise heralded single-photon source. , 2010, Optics express.

[101]  Pieter Kok,et al.  Introduction to Optical Quantum Information Processing: Preface , 2010 .

[102]  Z. Levine,et al.  Heralded, pure-state single-photon source based on a Potassium Titanyl Phosphate waveguide. , 2010, Optics express.

[103]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[104]  A. Migdall,et al.  Microstructure-Fiber-Based Source of Photonic Entanglement , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[105]  Brian J. Smith,et al.  Photon pair generation in birefringent optical fibers. , 2009, Optics express.

[106]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[107]  P. Kwiat,et al.  Efficient optical quantum state engineering. , 2009, Physical review letters.

[108]  C. Silberhorn,et al.  Fibre assisted single photon spectrograph , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[109]  S. Scheel,et al.  Single-photon sources–an introduction , 2009 .

[110]  V. Schettini,et al.  Improved implementation and modeling of deadtime reduction in an actively multiplexed detection system , 2009 .

[111]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[112]  J. O'Brien Optical Quantum Computing , 2007, Science.

[113]  Christine Silberhorn,et al.  Heralded generation of ultrafast single photons in pure quantum States. , 2007, Physical review letters.

[114]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[115]  Jeffrey H Shapiro,et al.  On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. , 2007, Optics letters.

[116]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[117]  A. U’Ren,et al.  Generation of Fourier-transform-limited heralded single photons , 2007, 0709.3517.

[118]  A. Migdall,et al.  Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array , 2006, quant-ph/0601102.

[119]  Mark Oxborrow,et al.  Single-photon sources , 2005 .

[120]  E. Jeffrey,et al.  Towards a periodic deterministic source of arbitrary single-photon states , 2004 .

[121]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[122]  J. D. Franson,et al.  Single photons on pseudodemand from stored parametric down-conversion , 2002, quant-ph/0205103.

[123]  G. Rempe,et al.  Deterministic single-photon source for distributed quantum networking. , 2002, Physical review letters.

[124]  A. Gatti,et al.  Quantum Imaging , 2002, quant-ph/0203046.

[125]  A. Lvovsky,et al.  Quantum state reconstruction of the single-photon Fock state. , 2001, Physical review letters.

[126]  J. Clausen,et al.  Conditional quantum-state engineering in repeated 2-photon down-conversion , 2000, quant-ph/0007050.

[127]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[128]  Law,et al.  Continuous frequency entanglement: effective finite hilbert space and entropy control , 2000, Physical review letters.

[129]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[130]  D. Klyshko,et al.  Use of two-photon light for absolute calibration of photoelectric detectors , 1980 .

[131]  K. Stetson,et al.  Progress in optics , 1980, IEEE Journal of Quantum Electronics.

[132]  L. Mandel,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[133]  D. Klyshko Coherent Photon Decay in a Nonlinear Medium , 1967 .

[134]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[135]  Paul G. Kwiat,et al.  Time-Multiplexed Methods for Optical Quantum Information Processing , 2019, Springer Series in Optical Sciences.

[136]  EvanMeyer-Scott MarcelloMassaro Improving SPDC single-photon sources via extended heralding and feed-forward control , 2019 .

[137]  Christine Silberhorn,et al.  A Source for Mesoscopic Quantum Optics † , 2015 .

[138]  G. Bridaa,et al.  Improved implementation and modeling of deadtime reduction in an actively multiplexed detection system , 2009 .