Identification of an amyloid fibril forming peptide comprising residues 46–59 of apolipoprotein A‐I

apoA‐I and apoA‐I bind by X‐ray fiber diffraction (View interaction)

[1]  P. Barter,et al.  Formation and Metabolism of Prebeta-Migrating, Lipid-Poor Apolipoprotein A-I , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[2]  Lars Terenius,et al.  A Molecular Model of Alzheimer Amyloid β-Peptide Fibril Formation* , 1999, The Journal of Biological Chemistry.

[3]  J. Weissman,et al.  Differences in prion strain conformations result from non-native interactions in a nucleus. , 2010, Nature chemical biology.

[4]  J. Seelig,et al.  Thermodynamics of protein self-association and unfolding. The case of apolipoprotein A-I. , 2012, Biochemistry.

[5]  C. Betsholtz,et al.  Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Howlett,et al.  The structural basis for amyloid formation by plasma apolipoproteins: a review , 2002, European Biophysics Journal.

[7]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[8]  P. Hawkins,et al.  Amyloidogenicity and clinical phenotype associated with five novel mutations in apolipoprotein A-I. , 2011, The American journal of pathology.

[9]  G. Howlett,et al.  Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II(60-70) peptide. , 2010, Physical chemistry chemical physics : PCCP.

[10]  J Q Trojanowski,et al.  A Hydrophobic Stretch of 12 Amino Acid Residues in the Middle of α-Synuclein Is Essential for Filament Assembly* , 2001, The Journal of Biological Chemistry.

[11]  L. Serpell,et al.  Diffraction to study protein and peptide assemblies. , 2006, Current opinion in chemical biology.

[12]  Susan Jones,et al.  Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro. , 2003, Journal of molecular biology.

[13]  C. L. Teoh,et al.  A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations. , 2011, Journal of molecular biology.

[14]  G. Howlett,et al.  Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I , 2010, Proceedings of the National Academy of Sciences.

[15]  David Eisenberg,et al.  Atomic structures of amyloid cross-beta spines reveal varied steric zippers. , 2007, Nature.

[16]  O. Gursky,et al.  The crystal structure of the C-terminal truncated apolipoprotein A-I sheds new light on amyloid formation by the N-terminal fragment. , 2012, Biochemistry.

[17]  A. Tall,et al.  Cholesterol efflux pathways and other potential mechanisms involved in the athero‐protective effect of high density lipoproteins , 2008, Journal of internal medicine.

[18]  O. Gursky,et al.  Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Goette,et al.  Prevalence and pathology of amyloid in atherosclerotic arteries. , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[20]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[21]  D. Atkinson,et al.  Crystal Structure of C-terminal Truncated Apolipoprotein A-I Reveals the Assembly of High Density Lipoprotein (HDL) by Dimerization* , 2011, The Journal of Biological Chemistry.