Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements.

We determine the plasmon dispersion relation in coaxial waveguides composed of a circular channel separating a metallic core and cladding. Optical transmission measurements are performed on isolated coaxial nanoapertures fabricated on a Ag film using focused ion-beam lithography. The dispersion depends strongly on the dielectric material and layer thickness. Our experimental results agree well with an analytical model for plasmon dispersion in coaxial waveguides. We observe large phase shifts at reflection from the end facets of the coaxial cavity, which strongly affect the waveguide resonances and can be tuned by changing the coax geometry, composition, and surrounding dielectric index, enabling coaxial cavities with ultrasmall mode volumes.

[1]  M. Orenstein,et al.  Ultrasmall volume plasmons, yet with complete retardation effects. , 2008, Physical review letters.

[2]  N. Engheta,et al.  Multifrequency optical invisibility cloak with layered plasmonic shells. , 2008, Physical review letters.

[3]  Ewold Verhagen,et al.  Nanofocusing in laterally tapered plasmonic waveguides. , 2008, Optics express.

[4]  David N. Jamieson,et al.  Extraordinary optical transmission with coaxial apertures , 2007 .

[5]  Albert Polman,et al.  Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays , 2007 .

[6]  Albert Polman,et al.  Programmable nanolithography with plasmon nanoparticle arrays. , 2007, Nano letters.

[7]  Davy Gérard,et al.  An angle-independent Frequency Selective Surface in the optical range. , 2006, Optics express.

[8]  Michael I. Haftel,et al.  Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons , 2006 .

[9]  F. Baida,et al.  Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes , 2006 .

[10]  Girsh Blumberg,et al.  Role of cylindrical surface plasmons in enhanced transmission , 2006, SPIE Optics + Photonics.

[11]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[12]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[13]  F. Baida,et al.  Annular aperture arrays: study in the visible region of the electromagnetic spectrum. , 2005, Optics letters.

[14]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[15]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[16]  G. Wiederrecht,et al.  Near-field photochemical imaging of noble metal nanostructures. , 2005, Nano letters.

[17]  K. Malloy,et al.  Enhanced infrared transmission through subwavelength coaxial metallic arrays. , 2005, Physical review letters.

[18]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[19]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[20]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[21]  Novotny,et al.  Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  J. R. Lucas Electromagnetic Theory - , 2001 .

[23]  D. Marcuse Light transmission optics , 1972 .