Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging.

Nanometer-sized particles, such as semiconductor quantum dots and iron oxide nanocrystals, have novel optical, electronic, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with tumor-targeting ligands, such as monoclonal antibodies, peptide fragments of tumor-specific proteins or small molecules, these nanoparticles can be used to target tumor antigens (biomarkers) and tumor vasculatures with high affinity and specificity. In the mesoscopic size range of 5-100 nm diameter, quantum dots and related nanoparticles have large surface areas and functional groups that can be linked to multiple diagnostic (e.g., optical, radioisotopic or magnetic) and therapeutic (e.g., anticancer) agents. In this review, recent advances in the development and applications of bioconjugated quantum dots and multifunctional nanoparticles for in vivo tumor imaging and targeting are discussed.

[1]  R. Weissleder,et al.  Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging , 2002, European Radiology.

[2]  Thommey P. Thomas,et al.  Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. , 2004, Bioconjugate chemistry.

[3]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[4]  Michael R. Caplan,et al.  Targeting Drugs to Combinations of Receptors: A Modeling Analysis of Potential Specificity , 2005, Annals of Biomedical Engineering.

[5]  Hassan S. Bazzi,et al.  Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots , 2005, Journal of Molecular Medicine.

[6]  星野 昭芳,et al.  Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification , 2008 .

[7]  Peter van Gelderen,et al.  Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells , 2001, Nature Biotechnology.

[8]  Klaas Nicolay,et al.  Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. , 2006, Bioconjugate chemistry.

[9]  R K Jain,et al.  Understanding barriers to drug delivery: high resolution in vivo imaging is key. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[10]  Raoul Kopelman,et al.  Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. , 2004, Current opinion in chemical biology.

[11]  C. Walle,et al.  Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles , 2003, Nature.

[12]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[13]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[14]  John V Frangioni,et al.  Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. , 2005, The Annals of thoracic surgery.

[15]  T. Desai,et al.  Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study. , 2005, Journal of Physical Chemistry B.

[16]  V. Torchilin,et al.  Liposomes and Micelles to Target the Blood Pool for Imaging Purposes , 2000 .

[17]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[18]  M. Bawendi,et al.  Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. , 2005, Journal of the American Chemical Society.

[19]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[20]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Ralph Weissleder,et al.  Magneto/optical annexin V, a multimodal protein. , 2004, Bioconjugate chemistry.

[22]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[23]  M. Ritter Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen , 2004 .

[24]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[25]  Thommey P. Thomas,et al.  Synthesis and in Vitro Testing of J 591 Antibody-Dendrimer Conjugates for Targeted Prostate Cancer Therapy , 2022 .

[26]  Vladimir P Torchilin,et al.  Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo , 2005, Nature Medicine.

[27]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[28]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[29]  Hedi Mattoussi,et al.  Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy , 2004, Nature Medicine.

[30]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[31]  Igor L. Medintz,et al.  A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R K Jain,et al.  Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[33]  Alexander Eychmüller,et al.  Colloidally Prepared HgTe Nanocrystals with Strong Room‐Temperature Infrared Luminescence , 1999 .

[34]  Zeev Rosenzweig,et al.  Superparamagnetic Fe2O3 Beads−CdSe/ZnS Quantum Dots Core−Shell Nanocomposite Particles for Cell Separation , 2004 .

[35]  Shimon Weiss,et al.  Advances in fluorescence imaging with quantum dot bio-probes. , 2006, Biomaterials.

[36]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[37]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[38]  R. Duncan The dawning era of polymer therapeutics , 2003, Nature Reviews Drug Discovery.

[39]  Bing Xu,et al.  Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[40]  Shuming Nie,et al.  Doping Mesoporous Materials with Multicolor Quantum Dots , 2003 .

[41]  V. Torchilin,et al.  Targeted delivery of diagnostic agents by surface-modified liposomes , 1994 .

[42]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[43]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[44]  Igor L. Medintz,et al.  A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.

[45]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[46]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[47]  L. Cohn,et al.  Sentinel lymph node mapping of the pleural space. , 2005, Chest.

[48]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[49]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[50]  Tejal A Desai,et al.  Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. , 2005, Nano letters.

[51]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[52]  Shuming Nie,et al.  Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging , 2006, Annals of Biomedical Engineering.

[53]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[54]  S. Nie,et al.  Quantum dot nanocrystals for in vivo molecular and cellular imaging. , 2004, Photochemistry and photobiology.

[55]  T. Aida,et al.  Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. , 2003 .

[56]  Ralph Weissleder,et al.  A dual fluorochrome probe for imaging proteases. , 2004, Bioconjugate chemistry.

[57]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[58]  J. Ripoll,et al.  Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Akiyoshi Hoshino,et al.  Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. , 2004, Biochemical and biophysical research communications.

[60]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[61]  R. Crooks,et al.  Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots , 2000 .

[62]  A Paul Alivisatos,et al.  Discrete nanostructures of quantum dots/Au with DNA. , 2004, Journal of the American Chemical Society.

[63]  H. Mattoussi,et al.  Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. , 2003, Analytical chemistry.

[64]  A Curtis,et al.  Nantotechniques and approaches in biotechnology. , 2001, Trends in biotechnology.

[65]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[66]  Thommey P. Thomas,et al.  Design and Function of a Dendrimer-Based Therapeutic Nanodevice Targeted to Tumor Cells Through the Folate Receptor , 2002, Pharmaceutical Research.

[67]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[68]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[69]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[70]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[71]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[72]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[73]  Christof M Niemeyer,et al.  On the generation of free radical species from quantum dots. , 2005, Small.

[74]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.