On regularity criteria for the n-dimensional Navier–Stokes equations in terms of the pressure
暂无分享,去创建一个
Song Jiang | Jishan Fan | Guoxi Ni | Song Jiang | Guoxi Ni | J. Fan | Jishan Fan
[1] Yong Zhou,et al. On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $$\mathbb{R}^{N}$$ , 2006 .
[2] Takashi Kato,et al. StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .
[3] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[4] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[5] J. Serrin. The initial value problem for the Navier-Stokes equations , 1963 .
[6] Yong Zhou,et al. On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ³ , 2005 .
[7] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[8] H. Sohr,et al. Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes , 1983 .
[9] H.BeirāodaVeiga. A New Regularity Class for the Navier-Stokes Equations in IR^n , 1995 .
[10] H. Beirao da Veiga,et al. Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space , 1985 .
[11] E. Hopf,et al. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .
[12] Pierre Gilles Lemarié-Rieusset,et al. Recent Developments in the Navier-Stokes Problem , 2002 .
[13] Vladimir Sverak,et al. L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .
[14] B. Jones,et al. The initial value problem for the Navier-Stokes equations with data in Lp , 1972 .
[15] Yoshikazu Giga,et al. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .
[16] Luigi C. Berselli,et al. Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .
[17] Yong Zhou,et al. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain , 2004 .
[18] Takahashi Shuji. On A Regularity Criterion Up to The Boundary for Weak Solutions of The Navier–Stokes Equations , 1992 .
[19] G. Galdi,et al. The weight function approach to uniqueness of viscous flows in unbounded domains , 1979 .
[20] S. Dubois. Uniqueness for some Leray–Hopf solutions to the Navier–Stokes equations , 2003 .
[21] M. Struwe. On a Serrin-Type Regularity Criterion for the Navier–Stokes Equations in Terms of the Pressure , 2007 .
[22] P. Tchamitchian,et al. Basis of wavelets and atomic decompositions of ¹(ⁿ) and ¹(ⁿ×ⁿ) , 1991 .
[23] Shuji Takahashi. On interior regularity criteria for weak solutions of the navier-stokes equations , 1990 .
[24] Dongho Chae,et al. Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations , 2011 .
[25] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[26] Vladimir Maz’ya,et al. Theory of multipliers in spaces of differentiable functions , 1983 .
[27] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[28] V. Sverák,et al. The Navier-Stokes equations and backward uniqueness , 2002 .
[29] Takehiko Ohyama,et al. Interior regularity of weak solutions of the time-dependent Navier-Stokes equation , 1960 .
[30] Équations aux dérivées partielles et applications , 2008 .
[31] Tosio Kato. Strong solutions of the Navier-Stokes equation in Morrey spaces , 1992 .
[32] Wolf von Wahl,et al. On the regularity of the pressure of weak solutions of Navier-Stokes equations , 1986 .
[33] Michael Struwe,et al. On partial regularity results for the navier‐stokes equations , 1988 .