On regularity criteria for the n-dimensional Navier–Stokes equations in terms of the pressure

Abstract We study the Cauchy problem for the n-dimensional Navier–Stokes equations ( n ⩾ 3 ), and prove some regularity criteria involving the integrability of the pressure or the pressure gradient for weak solutions in the Morrey, Besov and multiplier spaces.

[1]  Yong Zhou,et al.  On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $$\mathbb{R}^{N}$$ , 2006 .

[2]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[3]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[4]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[5]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[6]  Yong Zhou,et al.  On regularity criteria in terms of pressure for the Navier-Stokes equations in ℝ³ , 2005 .

[7]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[8]  H. Sohr,et al.  Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes , 1983 .

[9]  H.BeirāodaVeiga A New Regularity Class for the Navier-Stokes Equations in IR^n , 1995 .

[10]  H. Beirao da Veiga,et al.  Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space , 1985 .

[11]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[12]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[13]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[14]  B. Jones,et al.  The initial value problem for the Navier-Stokes equations with data in Lp , 1972 .

[15]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[16]  Luigi C. Berselli,et al.  Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .

[17]  Yong Zhou,et al.  Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain , 2004 .

[18]  Takahashi Shuji On A Regularity Criterion Up to The Boundary for Weak Solutions of The Navier–Stokes Equations , 1992 .

[19]  G. Galdi,et al.  The weight function approach to uniqueness of viscous flows in unbounded domains , 1979 .

[20]  S. Dubois Uniqueness for some Leray–Hopf solutions to the Navier–Stokes equations , 2003 .

[21]  M. Struwe On a Serrin-Type Regularity Criterion for the Navier–Stokes Equations in Terms of the Pressure , 2007 .

[22]  P. Tchamitchian,et al.  Basis of wavelets and atomic decompositions of ¹(ⁿ) and ¹(ⁿ×ⁿ) , 1991 .

[23]  Shuji Takahashi On interior regularity criteria for weak solutions of the navier-stokes equations , 1990 .

[24]  Dongho Chae,et al.  Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations , 2011 .

[25]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[26]  Vladimir Maz’ya,et al.  Theory of multipliers in spaces of differentiable functions , 1983 .

[27]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[28]  V. Sverák,et al.  The Navier-Stokes equations and backward uniqueness , 2002 .

[29]  Takehiko Ohyama,et al.  Interior regularity of weak solutions of the time-dependent Navier-Stokes equation , 1960 .

[30]  Équations aux dérivées partielles et applications , 2008 .

[31]  Tosio Kato Strong solutions of the Navier-Stokes equation in Morrey spaces , 1992 .

[32]  Wolf von Wahl,et al.  On the regularity of the pressure of weak solutions of Navier-Stokes equations , 1986 .

[33]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .