Verifying Scientific Simulations via Comparative and Quantitative Visualization

This article presents a visualization-assisted process that verifies scientific-simulation codes. Code verification is necessary because scientists require accurate predictions to interpret data confidently. This verification process integrates iterative hypothesis verification with comparative, feature, and quantitative visualization. Following this process can help identify differences in cosmological and oceanographic simulations.

[1]  Min Chen,et al.  Data, Information, and Knowledge in Visualization , 2009, IEEE Computer Graphics and Applications.

[2]  Carson Brownlee,et al.  Quantitatively driven visualization and analysis on emerging architectures , 2008 .

[3]  Xin Wang,et al.  Tracking and Visualizing Turbulent , 1997 .

[4]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[5]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[6]  Kenneth I. Joy,et al.  Query-Driven Visualization of Time-Varying Adaptive Mesh Refinement Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[7]  Helwig Hauser,et al.  Hypothesis Generation in Climate Research with Interactive Visual Data Exploration , 2008, IEEE Transactions on Visualization and Computer Graphics.

[8]  Kwan-Liu Ma,et al.  Multiple Uncertainties in Time-Variant Cosmological Particle Data , 2008, 2008 IEEE Pacific Visualization Symposium.

[9]  Katrin Heitmann,et al.  Capturing halos at high redshifts , 2006 .

[10]  R. C. Malone,et al.  Parallel ocean general circulation modeling , 1992 .

[11]  Richard L. Peskin,et al.  Interactive Quantitative Visualization , 1991, IBM J. Res. Dev..

[12]  T. J. Jankun-Kelly,et al.  Visualization Exploration and Encapsulation via a Spreadsheet-Like Interface , 2001, IEEE Trans. Vis. Comput. Graph..

[13]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .