Mercury: the enigmatic innermost planet

Abstract The planet Mercury, a difficult object for study by astronomical observation and spacecraft exploration alike, poses multiple challenges to our general understanding of the inner planets. Mercury’s anomalously high uncompressed density implies a metal fraction of 60% or more by mass, an extreme outcome of planetary formational processes common to the inner solar system. Whether that outcome was the result of chemical gradients in the early solar nebula or removal by impact or vaporization of most of the silicate shell from a differentiated protoplanet can potentially be distinguished on the basis of the chemical composition of the present crust. Our understanding of the geological evolution of Mercury and how it fits within the known histories of the other terrestrial planets is restricted by the limited coverage and resolution of imaging by the only spacecraft to have visited the planet. The role of volcanism in Mercury’s geological history remains uncertain, and the dominant tectonic structures are lobate scarps interpreted as recording an extended episode of planetary contraction, issues that require global imaging to be fully examined. That Mercury has retained a global magnetic field when larger terrestrial planets have not stretches the limits of standard hydromagnetic dynamo theory and has led to proposals for a fossil field or for exotic dynamo scenarios. Hypotheses for field generation can be distinguished on the basis of the geometry of Mercury’s internal field, and the existence and size of a fluid outer core on Mercury can be ascertained from measurements of the planet’s spin axis orientation and gravity field and the amplitude of Mercury’s forced librations. The nature of Mercury’s polar deposits, suggested to consist of volatile material cold-trapped on the permanently shadowed floors of high-latitude impact craters, can be tested by remote sensing of the composition of Mercury’s surface and polar atmosphere. The extremely dynamic exosphere, which includes a number of species derived from Mercury’s surface, offers a novel laboratory for exploring the nature of the complex and changing interactions among the solar wind, a small magnetosphere, and a solid planet. Recent ground-based astronomical measurements and several new theoretical developments set the stage for the in-depth exploration of Mercury by two spacecraft missions within the coming decade.

[1]  K. Rawlins,et al.  External Sources of Water for Mercury's Putative Ice Deposits☆ , 1999 .

[2]  V. Lesur,et al.  Exact solutions for internally induced magnetization in a shell , 2000 .

[3]  S. Weidenschilling,et al.  Formation of Planetary Embryos , 2000 .

[4]  A. Vasavada,et al.  The Thermal Stability of Water Ice at the Poles of Mercury , 1992, Science.

[5]  David K. Lynch,et al.  Mercury: Mid‐infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene , 2002 .

[6]  M. Ross,et al.  Mercury's thermal history and the generation of its magnetic field , 1988 .

[7]  Paul G. Lucey,et al.  Lunar pure anorthosite as a spectral analog for Mercury , 2002 .

[8]  S. Weidenschilling,et al.  Formation of planetesimals in the solar nebula , 1993 .

[9]  S. Peale The rotational dynamics of Mercury and the state of its core , 1988 .

[10]  Alberto Anselmi,et al.  BepiColombo, ESA's Mercury Cornerstone mission , 2001 .

[11]  A. Vasavada,et al.  Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits☆ , 1999 .

[12]  J. Harmon Mercury radar studies and lunar comparisons , 1997 .

[13]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[14]  A. Balogh,et al.  Mercury's thermoelectric dynamo model revisited , 2002 .

[15]  Johan Warell,et al.  Properties of the Hermean regolith: I. Global regolith albedo variation at scale from multicolor CCD imaging , 2001 .

[16]  Robert G. Strom,et al.  Exploring Mercury: The Iron Planet , 2003 .

[17]  Mark S. Robinson,et al.  A revised control network for Mercury , 1999 .

[18]  Willy Benz,et al.  Collisional stripping of Mercury's mantle , 1988 .

[19]  A. G. W. Cameron,et al.  The partial volatilization of Mercury , 1985 .

[20]  A Digital High-Definition Imaging System for Spectral Studies of Extended Planetary Atmospheres. I. Initial Results in White Light Showing Features on the Hemisphere of Mercury Unimaged by Mariner 10 , 2000 .

[21]  François Leblanc,et al.  Mercury's sodium exosphere , 2003 .

[22]  Robert C. Moore,et al.  The MESSENGER mission to Mercury: spacecraft and mission design , 2001 .

[23]  S. Seager The search for extrasolar Earth-like planets , 2003 .

[24]  David E. Smith,et al.  A procedure for determining the nature of Mercury's core , 2002 .

[25]  Paul G. Lucey,et al.  Recalibrated Mariner 10 Color Mosaics: Implications for Mercurian Volcanism , 1997, Science.

[26]  V. Murthy,et al.  Experimental evidence that potassium is a substantial radioactive heat source in planetary cores , 2003, Nature.

[27]  A. Sprague,et al.  Mercury: Sodium Atmospheric Enhancements, Radar-Bright Spots, and Visible Surface Features , 1998 .

[28]  Sean C. Solomon,et al.  Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution , 2002 .

[29]  R. Phillips,et al.  Internal and tectonic evolution of Mercury , 2003 .

[30]  Gretchen Benedix,et al.  Spectra of extremely reduced assemblages: Implications for Mercury , 2002 .

[31]  N. Barlow,et al.  Mercurian impact craters: Implications for polar ground ice , 1999 .

[32]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[33]  D. Stevenson Planetary magnetic fields , 2003 .

[34]  Robert G. Strom,et al.  Mercury: An overview , 1997 .

[35]  M. Zuber,et al.  Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field? , 2004 .

[36]  J. Anderson,et al.  The mass, gravity field, and ephemeris of Mercury , 1987 .

[37]  S. Weidenschilling,et al.  Iron Silicate Fractionation and the Origin of Mercury , 1978 .

[38]  T. H. Morgan,et al.  Potassium in the atmosphere of Mercury , 1986 .

[39]  A. Stephenson,et al.  Crustal remanence and the magnetic moment of Mercury , 1976 .

[40]  T. Zurbuchen,et al.  Measuring the plasma environment at Mercury: The fast imaging plasma spectrometer , 2002 .

[41]  S. Runcorn,et al.  An ancient lunar magnetic dipole field , 1975, Nature.

[42]  R. Killen,et al.  Rapid changes in the sodium exosphere of Mercury , 1999 .

[43]  Rosemary M. Killen,et al.  The surface‐bounded atmospheres of Mercury and the Moon , 1999 .

[44]  Bernard V. Jackson,et al.  Evidence for space weather at Mercury , 2001 .

[45]  G. Kletetschka,et al.  Mineralogy of the sources for magnetic anomalies on Mars , 2000 .

[46]  Leonard J. Srnka,et al.  Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field] , 1976 .

[47]  C. Hansen,et al.  The neutron signature of Mercury's volatile polar deposits , 1997 .

[48]  George W. Wetherill,et al.  Accumulation of Mercury from planetesimals , 1988 .

[49]  A. C. Cook,et al.  The mechanical and thermal structure of Mercury's early lithosphere , 2002 .

[50]  M. Vincent,et al.  Determination of Mercury's 88 day libration and fluid core size from orbit , 1997 .

[51]  M. Mendillo,et al.  A Digital High-Definition Imaging System for Spectral Studies of Extended Planetary Atmospheres. I. Initial Results in White Light Showing Features on the Hemisphere of Mercury Unimaged by Mariner 10 , 2000 .

[52]  M. Slade,et al.  Radar Mapping of Mercury: Full-Disk Images and Polar Anomalies , 1992, Science.

[53]  G. Schubert,et al.  Sulfur in Mercury's Core? , 2001 .

[54]  A. C. Cook,et al.  Topography of lobate scarps on Mercury: New constraints on the planet's contraction , 1998 .

[55]  Richard D. Starr,et al.  The MESSENGER mission to Mercury: scientific payload , 2001 .

[56]  R. Clayton,et al.  A New Source of Basaltic Meteorites Inferred from Northwest Africa 011 , 2002, Science.

[57]  D. Hunten,et al.  Diurnal variation of sodium and potassium at Mercury , 2002 .

[58]  R. Killen,et al.  The sodium tail of Mercury , 2002 .

[59]  L. Starukhina High Radar Response of Mercury Polar Regions: Water Ice or Cold Silicates? , 2000 .

[60]  R. Paul Butler,et al.  Planets Orbiting Other Suns , 2000 .

[61]  Faith Vilas,et al.  Mercury: Absence of crystalline Fe2+ in the regolith , 1985 .

[62]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[63]  Clark R. Chapman,et al.  The MESSENGER mission to Mercury: Scientific objectives and implementation , 2001 .

[64]  Johannes Benkhoff,et al.  Mercury's polar caps and the generation of an OH exosphere , 1997 .

[65]  H. Palme A New Solar System Basalt , 2002, Science.

[66]  Paul G. Lucey,et al.  A Comparison of Mercurian Reflectance and Spectral Quantities with Those of the Moon , 1997 .

[67]  Scott W. Teare,et al.  Ground-based High-Resolution Imaging of Mercury , 2000 .

[68]  M. Grande,et al.  Opportunities for X-ray remote sensing at Mercury , 2001 .

[69]  S. Solomon,et al.  An international program for Mercury exploration: synergy of MESSENGER and BepiColombo , 2004 .

[70]  Uwe Fink,et al.  Distribution and Abundance of Sodium in Mercury's Atmosphere, 1985–1988 , 1997 .

[71]  J. Oberst,et al.  Geologic evolution and cratering history of Mercury , 2001 .

[72]  Imaging the surface of Mercury using ground-based telescopes , 2001 .

[73]  Donald M. Hunten,et al.  Sulfur at Mercury, Elemental at the Poles and Sulfides in the Regolith , 1995 .

[74]  D. Muhleman,et al.  Mercury Radar Imaging: Evidence for Polar Ice , 1992, Science.

[75]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[76]  Thomas A. Bida,et al.  Discovery of calcium in Mercury's atmosphere , 2000, Nature.

[77]  A. C. Cook,et al.  Mariner 10 stereo image coverage of Mercury , 2000 .

[78]  A. Balogh,et al.  Modelling of magnetic field measurements at Mercury , 2001 .

[79]  Martin A. Slade,et al.  High-Resolution Radar Imaging of Mercury's North Pole , 2001 .

[80]  B. Fegley,et al.  A vaporization model for iron/silicate fractionation in the Mercury protoplanet , 1987 .

[81]  F. Nimmo Constraining the crustal thickness on Mercury from viscous topographic relaxation , 2002 .

[82]  JOHN S. Lewis Origin and composition of Mercury , 1988 .

[83]  J. Brückner,et al.  Planetary gamma-ray spectroscopy of the surface of Mercury , 1994 .

[84]  A. Balogh,et al.  Returns to Mercury: science and mission objectives , 2001 .

[85]  N. Ness,et al.  Observations of Mercury's magnetic field , 1975 .

[86]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[87]  Lionel Wilson,et al.  Identification of mercurian volcanism: Resolution effects and implications for MESSENGER , 2002 .

[88]  R. Jeanloz,et al.  Evidence for a basalt-free surface on Mercury and implications for internal heat. , 1995, Science.

[89]  S. Solomon,et al.  Determination of the properties of Mercury's magnetic field by the MESSENGER mission , 2004 .

[90]  K. Keil,et al.  Recognizing mercurian meteorites , 1995 .

[91]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[92]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.