Bioceramics: From Bone Regeneration to Cancer Nanomedicine

Research on biomaterials has been growing in the last few years due to the clinical needs in organs and tissues replacement and regeneration. In addition, cancer nanomedicine has recently appeared as an effective means to combine nanotechnology developments towards a clinical application. Ceramic materials are suitable candidates to be used in the manufacturing of bone-like scaffolds. Bioceramic materials may also be designed to deliver biologically active substances aimed at repairing, maintaining, restoring or improving the function of organs and tissues in the organism. Several materials such as calcium phosphates, glasses and glass ceramics able to load and subsequently release in a controlled fashion drugs, hormones, growth factors, peptides or nucleic acids have been developed. In particular, to prevent post surgical infections bioceramics may be surface modified and loaded with certain antibiotics, thus preventing the formation of bacterial biofilms. Remarkably, mesoporous bioactive glasses have shown excellent characteristics as drug carrying bone regeneration materials. These bioceramics are not only osteoconductive and osteoproductive, but also osteoinductive, and have therefore been proposed as ideal components for the fabrication of scaffolds for bone tissue engineering. A recent promising development of bioceramic materials is related to the design of magnetic mediators against tumors. Magnetic composites are suitable thermoseeds for cancer treatment by hyperthermia. Moreover, magnetic nanomaterials offer a wide range of possibilities for diagnosis and therapy. These nanoparticles may be conjugated with therapeutic agents and heat the surrounding tissue under the action of alternating magnetic fields, enabling hyperthermia of cancer as an effective adjunct to chemotherapy regimens.

[1]  Nicolas Tsapis,et al.  Nanoparticles: heating tumors to death? , 2011, Nanomedicine.

[2]  M. Vallet‐Regí Nanostructured mesoporous silica matrices in nanomedicine , 2010, Journal of internal medicine.

[3]  J. B. Park,et al.  Defining the heating characteristics of ferromagnetic implants using calorimetry. , 2000, Journal of biomedical materials research.

[4]  J. Jansen,et al.  A new method to produce macropores in calcium phosphate cements. , 2002, Biomaterials.

[5]  M. Vallet‐Regí,et al.  Multinuclear Solid-State NMR Studies of Ordered Mesoporous Bioactive Glasses , 2008 .

[6]  Qian Liu,et al.  Comparisons between surfactant-templated mesoporous and conventional sol–gel-derived CaO–B2O3–SiO2 glasses: Compositional, textural and in vitro bioactive properties , 2008 .

[7]  M. H. Fernandes,et al.  Role of acid attack in the in vitro bioactivity of a glass-ceramic of the 3CaO.P2O5-CaO.SiO2-CaO.MgO.2SiO2 system. , 2001, Biomaterials.

[8]  Hala Zreiqat,et al.  The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. , 2010, Biomaterials.

[9]  L. Bergström,et al.  Meso/Macroporous, Mechanically Stable Silica Monoliths of Complex Shape by Controlled Fusion of Mesoporous Spherical Particles , 2006 .

[10]  Yuhan Sun,et al.  Controlled drug release from bifunctionalized mesoporous silica , 2008 .

[11]  Feng Chen,et al.  Multifunctional Mesoporous Nanoellipsoids for Biological Bimodal Imaging and Magnetically Targeted Delivery of Anticancer Drugs , 2011 .

[12]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Po-Wen Chung,et al.  Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size , 2010 .

[14]  G. Mul,et al.  Mesoporous silica material TUD-1 as a drug delivery system. , 2007, International journal of pharmaceutics.

[15]  Chung-Yuan Mou,et al.  Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers , 2005 .

[16]  Jenny Andersson,et al.  Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices , 2004 .

[17]  Dean-Mo Liu,et al.  Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[18]  David Grosso,et al.  Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials , 2011, Advanced materials.

[19]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[20]  M. Vallet‐Regí,et al.  A novel bioactive and magnetic biphasic material. , 2002, Biomaterials.

[21]  J. Jansen,et al.  Subperiosteal implantation of various RF magnetron sputtered Ca-P coatings in goats. , 1998, Journal of biomedical materials research.

[22]  M. Vallet‐Regí,et al.  Bioceramics and pharmaceuticals: A remarkable synergy , 2007 .

[23]  C HISCOCK,et al.  YELLOW NAILS AND LYMPHOEDEMA. , 1964, Lancet.

[24]  M. Vallet‐Regí,et al.  Amino−Polysiloxane Hybrid Materials for Bone Reconstruction , 2006 .

[25]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[26]  Dennis E Discher,et al.  Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[27]  Serena M. Best,et al.  Bioceramics: Past, present and for the future , 2008 .

[28]  Y. Nagasaki,et al.  Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy. , 2010, Nanoscale.

[29]  Marcel Garcia,et al.  Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. , 2009, Chemical communications.

[30]  Masakazu Kawashita,et al.  Novel bioactive materials with different mechanical properties. , 2003, Biomaterials.

[31]  J. Planell,et al.  Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. , 2004, Biomaterials.

[32]  T. Lenarz,et al.  Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants , 2011 .

[33]  J. F. Stoddart,et al.  Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.

[34]  K. Schwarz,et al.  Growth-promoting Effects of Silicon in Rats , 1972, Nature.

[35]  M. Vallet‐Regí Current trends on porous inorganic materials for biomedical applications , 2008 .

[36]  M. Vallet‐Regí,et al.  Calcium phosphate coatings deposited by aerosol chemical vapour deposition , 2003 .

[37]  Leaf Huang,et al.  Cancer Immunotherapy and Nanomedicine , 2011, Pharmaceutical Research.

[38]  Maria Strømme,et al.  Mesoporous silica particles induce size dependent effects on human dendritic cells. , 2007, Nano letters.

[39]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[40]  K. Unger,et al.  The synthesis of micrometer‐ and submicrometer‐size spheres of ordered mesoporous oxide MCM‐41 , 1997 .

[41]  M. Vallet‐Regí,et al.  Structural study and stability of hydroxyapatite and beta-tricalcium phosphate: two important bioceramics. , 2000, Journal of biomedical materials research.

[42]  M. Vallet‐Regí,et al.  Controlled Crystallization of Calcium Phosphate Apatites , 2000 .

[43]  M. Vallet‐Regí,et al.  Calcium phosphates as substitution of bone tissues , 2004 .

[44]  M. Vallet‐Regí,et al.  An injectable paste of calcium phosphate nanorods, functionalized with nucleic acids, for cell transfection and gene silencing , 2010 .

[45]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[46]  Chung-Yuan Mou,et al.  The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. , 2007, Biomaterials.

[47]  E M Carlisle,et al.  Silicon: A Possible Factor in Bone Calcification , 1970, Science.

[48]  Julian R. Jones,et al.  Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. , 2009, Biomaterials.

[49]  J. Rosenecker,et al.  Insights into the mechanism of magnetofection using PEI‐based magnetofectins for gene transfer , 2004, The journal of gene medicine.

[50]  Younan Xia,et al.  Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. , 2009, Nano letters.

[51]  María Vallet-Regí,et al.  Sol-gel silica-based biomaterials and bone tissue regeneration. , 2010, Acta biomaterialia.

[52]  Sergey V. Dorozhkin,et al.  Calcium orthophosphate cements for biomedical application , 2008 .

[53]  M. Vallet‐Regí,et al.  XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses. , 1999, Journal of biomedical materials research.

[54]  Fabian Kiessling,et al.  Nanotheranostics and image-guided drug delivery: current concepts and future directions. , 2010, Molecular pharmaceutics.

[55]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[56]  M. Vallet‐Regí,et al.  High Specific Surface Area in Nanometric Carbonated Hydroxyapatite , 2008 .

[57]  Thomas Jay Webster,et al.  Nanomedicine for implants: a review of studies and necessary experimental tools. , 2007, Biomaterials.

[58]  Jiang Chang,et al.  Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[59]  Robert Langer,et al.  The biocompatibility of mesoporous silicates. , 2008, Biomaterials.

[60]  J. Rosenholm,et al.  Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles , 2010 .

[61]  Yuhan Sun,et al.  Ph-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate , 2009 .

[62]  Juan L. Vivero-Escoto,et al.  Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery , 2010, Expert opinion on drug delivery.

[63]  T. Yao,et al.  Preparation of Glass-Ceramics Containing Ferrimagnetic Zinc-Iron Ferrite for the Hyperthermal Treatment of Cancer , 2004 .

[64]  Weihong Tan,et al.  Synthesis and Characterization of Fluorescent, Radio‐Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications , 2005 .

[65]  Jens R. Rostrup-Nielsen Conversion of hydrocarbons and alcohols for fuel cells , 2001 .

[66]  Dean-Mo Liu,et al.  Magnetic-sensitive silica nanospheres for controlled drug release. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[67]  M. Srinivasan,et al.  Cadmium and lead ion capture with Three dimensionally ordered macroporous hydroxyapatite. , 2006, Environmental science & technology.

[68]  Yang Leng,et al.  Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. , 2003, Biomaterials.

[69]  D. Avnir,et al.  Biochemical aspects of sol-gel science and technology : a special issue of the Journal of sol-gel science and technology , 1996 .

[70]  E. Fernández,et al.  Characterization of a novel calcium phosphate/sulphate bone cement. , 2002, Journal of biomedical materials research.

[71]  J. Vacanti,et al.  Tissue engineering : Frontiers in biotechnology , 1993 .

[72]  Pennycook,et al.  High-resolution incoherent imaging of crystals. , 1990, Physical review letters.

[73]  María Vallet-Regí,et al.  Smart drug delivery through DNA/magnetic nanoparticle gates. , 2011, ACS nano.

[74]  M. Vallet‐Regí,et al.  Glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. , 2006, Journal of biomedical materials research. Part A.

[75]  M. Vallet‐Regí,et al.  A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses. , 2003, Journal of biomedical materials research. Part A.

[76]  R. Costo,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS , 2003 .

[77]  A. Kabanov,et al.  Evaluation of polyplexes as gene transfer agents. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[78]  E. Place,et al.  Complexity in biomaterials for tissue engineering. , 2009, Nature materials.

[79]  M. Vallet‐Regí,et al.  Influence of the stabilization temperature on textural and structural features and ion release in SiO2-CaO-P2O5 sol-gel glasses , 2002 .

[80]  María Vallet-Regí,et al.  In vitro positive biocompatibility evaluation of glass-glass ceramic thermoseeds for hyperthermic treatment of bone tumors. , 2008, Tissue engineering. Part A.

[81]  Xiaoling Zhang,et al.  In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. , 2009, Biomaterials.

[82]  Dean-Mo Liu,et al.  Surfactant‐Free, Self‐Assembled PVA‐Iron Oxide/Silica Core–Shell Nanocarriers for Highly Sensitive, Magnetically Controlled Drug Release and Ultrahigh Cancer Cell Uptake Efficiency , 2008 .

[83]  S. Inagaki,et al.  Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. , 2011, Chemical Society reviews.

[84]  Jiang Chang,et al.  Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. , 2004, Biomaterials.

[85]  T. Yen,et al.  Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. , 2010, Biomaterials.

[86]  K. Hidajat,et al.  pH-Controllable drug release using hydrogel encapsulated mesoporous silica. , 2007, Chemical communications.

[87]  T. Kokubo,et al.  Preparation and Magnetic Properties of Glass-Ceramics Containing α-Fe for Hyperthermia , 1997 .

[88]  P Wust,et al.  Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial , 2007, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[89]  S. Radin,et al.  Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. , 2007, Biomaterials.

[90]  María Vallet-Regí,et al.  Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. , 2006, Journal of the American Chemical Society.

[91]  J. Rosenecker,et al.  The Magnetofection Method: Using Magnetic Force to Enhance Gene Delivery , 2003, Biological chemistry.

[92]  J. Dobson,et al.  Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery , 2006, Gene Therapy.

[93]  María Vallet-Regí,et al.  From the bioactive glasses to the star gels , 2006, Journal of materials science. Materials in medicine.

[94]  P. Wright,et al.  Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid , 2005 .

[95]  T. Yao,et al.  Preparation of Magnetite-Containing Glass-Ceramics in Controlled Atmosphere for Hyperthermia of Cancer , 2001 .

[96]  Albert P. Philipse,et al.  Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core , 1994 .

[97]  María Vallet-Regí,et al.  Drug delivery from ordered mesoporous matrices , 2009, Expert opinion on drug delivery.

[98]  Sophie Neveu,et al.  Synthesis of very fine maghemite particles , 1995 .

[99]  M. Vallet‐Regí,et al.  Incorporation of Phosphorus into Mesostructured Silicas: A Novel Approach to Reduce the SiO2 Leaching in Water , 2009 .

[100]  M. Vallet‐Regí,et al.  Biotinylation of silicon-doped hydroxyapatite: a new approach to protein fixation for bone tissue regeneration. , 2010, Acta biomaterialia.

[101]  G. Exarhos,et al.  Bicontinuous, Thermoresponsive, L3‐Phase Silica Nanocomposites and Their Smart Drug‐Delivery Applications , 2005 .

[102]  Julian R Jones,et al.  Hierarchical porous materials for tissue engineering , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[104]  T. Sen,et al.  Mesoporous silica–magnetite nanocomposites: Fabrication, characterisation and applications in biosciences , 2009 .

[105]  R. Issels,et al.  Hyperthermia in oncology. , 2001 .

[106]  M. Vallet‐Regí,et al.  In vitro stability of SBA-15 under physiological conditions , 2010 .

[107]  J. D. Payne,et al.  Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice , 2007 .

[108]  Z. Ram,et al.  Gliadel® wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial , 2006, Acta Neurochirurgica.

[109]  L. Lidgren,et al.  Total hip joint arthroplasty with gentamicin-impregnated cement. A clinical study of gentamicin excretion kinetics. , 1983, Clinical orthopaedics and related research.

[110]  David F. Williams On the mechanisms of biocompatibility. , 2008, Biomaterials.

[111]  María Vallet-Regí,et al.  Bone-regenerative bioceramic implants with drug and protein controlled delivery capability , 2008 .

[112]  M. Vallet‐Regí,et al.  Tissue regeneration: A new property of mesoporous materials , 2005 .

[113]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[114]  V. S. Lin,et al.  Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier. , 2011, Chemistry.

[115]  L L Hench,et al.  An investigation of bioactive glass powders by sol-gel processing. , 1991, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[116]  Sergey V. Dorozhkin,et al.  Bioceramics of calcium orthophosphates. , 2010, Biomaterials.

[117]  C. V. van Blitterswijk,et al.  Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. , 2006, Tissue engineering.

[118]  F. Palumbo,et al.  Drug Delivery Devices Based on Mesoporous Silicate , 2004, Drug delivery.

[119]  Min Zhang,et al.  Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. , 2009, Small.

[120]  E. Tombácz,et al.  The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. , 2006, Journal of colloid and interface science.

[121]  Julian R. Jones,et al.  Laser Spinning of Bioactive Glass Nanofibers , 2009 .

[122]  M. Vallet‐Regí,et al.  Evidence of drug confinement into silica mesoporous matrices by STEM spherical aberration corrected microscopy. , 2010, Chemical communications.

[123]  Victor S-Y Lin,et al.  Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. , 2006, Journal of the American Chemical Society.

[124]  Jonathan C Knowles,et al.  Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. , 2004, Biomaterials.

[125]  Stefan Kaskel,et al.  Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering , 2008 .

[126]  R. Martínez‐Máñez,et al.  Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. , 2010, Angewandte Chemie.

[127]  M. Vallet‐Regí,et al.  Osteostatin-loaded bioceramics stimulate osteoblastic growth and differentiation. , 2010, Acta biomaterialia.

[128]  María Vallet-Regí,et al.  New developments in ordered mesoporous materials for drug delivery , 2010 .

[129]  Chung-Yuan Mou,et al.  Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. , 2008, Small.

[130]  O. S. Nielsen,et al.  A future for hyperthermia in cancer treatment? , 2001, European journal of cancer.

[131]  Jeff W M Bulte,et al.  Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. , 2003, Radiology.

[132]  Larry A. Sklar,et al.  Control of Molecular Transport Through Stimuli‐Responsive Ordered Mesoporous Materials , 2003 .

[133]  K. Hamad-Schifferli,et al.  Selective release of multiple DNA oligonucleotides from gold nanorods. , 2009, ACS nano.

[134]  Matthias Epple,et al.  Inorganic nanoparticles as carriers of nucleic acids into cells. , 2008, Angewandte Chemie.

[135]  Cari D. Pentecost,et al.  Construction of a pH-driven supramolecular nanovalve. , 2006, Organic letters.

[136]  Huipin Yuan,et al.  A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats , 2002, Journal of materials science. Materials in medicine.

[137]  G. Kothiyal,et al.  Magnetic and structural properties of CaO–SiO2–P2O5–Na2O–Fe2O3 glass ceramics , 2008 .

[138]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[139]  P D Nellist,et al.  Direct Sub-Angstrom Imaging of a Crystal Lattice , 2004, Science.

[140]  J. Fraser Stoddart,et al.  Supramolecular nanovalves controlled by proton abstraction and competitive binding , 2006 .

[141]  K. Anselme,et al.  Osteoblast adhesion on biomaterials. , 2000, Biomaterials.

[142]  J. L. Hueso,et al.  Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials , 2010 .

[143]  M. Vallet‐Regí,et al.  Essential Role of Calcium Phosphate Heterogeneities in 2D-Hexagonal and 3D-Cubic SiO2−CaO−P2O5 Mesoporous Bioactive Glasses , 2009 .

[144]  Hui Shen,et al.  Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran , 2005 .

[145]  Aldo R Boccaccini,et al.  PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. , 2004, Biomaterials.

[146]  Evert Schepers,et al.  In vivo tissue response to resorbable silica xerogels as controlled-release materials. , 2005, Biomaterials.

[147]  Galen D. Stucky,et al.  Rapid‐Setting, Mesoporous, Bioactive Glass Cements that Induce Accelerated In Vitro Apatite Formation , 2006 .

[148]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[149]  Jianfang Wang,et al.  Multifunctional Mesostructured Silica Microspheres from an Ultrasonic Aerosol Spray , 2008 .

[150]  R. Langer,et al.  Nanomedicine: developing smarter therapeutic and diagnostic modalities. , 2006, Advanced drug delivery reviews.

[151]  Everett E. Carpenter,et al.  Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly , 2001 .

[152]  M. Vallet‐Regí,et al.  Novel biomaterials for drug delivery , 2008 .

[153]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[154]  M. Vallet‐Regí,et al.  Silicon incorporation in hydroxylapatite obtained by controlled crystallization , 2004 .

[155]  N. Mohallem,et al.  Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia , 2010 .

[156]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[157]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[158]  A. Meunier,et al.  Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses. , 2001, Journal of biomedical materials research.

[159]  Melba Navarro,et al.  Nanotechnology in regenerative medicine: the materials side. , 2008, Trends in biotechnology.

[160]  D. Castner,et al.  Biomedical surface science: Foundations to frontiers , 2002 .

[161]  Yuen A. Lau,et al.  Mechanised nanoparticles for drug delivery. , 2009, Nanoscale.

[162]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[163]  P K Gupta,et al.  Drug targeting in cancer chemotherapy: a clinical perspective. , 1990, Journal of pharmaceutical sciences.

[164]  Jianlin Shi,et al.  Hierarchically Porous Bioactive Glass Scaffolds Synthesized with a PUF and P123 Cotemplated Approach , 2007 .

[165]  Douglas J Taatjes,et al.  Unique uptake of acid-prepared mesoporous spheres by lung epithelial and mesothelioma cells. , 2007, American journal of respiratory cell and molecular biology.

[166]  Waldemar Wlodarczyk,et al.  A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets , 2005, IEEE Transactions on Biomedical Engineering.

[167]  Manuel Arruebo,et al.  Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications , 2006 .

[168]  Peter Wust,et al.  Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme , 2006, Journal of Neuro-Oncology.

[169]  A. Lu,et al.  Highly stable carbon-protected cobalt nanoparticles and graphite shells. , 2005, Chemical communications.

[170]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for intracellular controlled drug delivery. , 2010, Small.

[171]  M. Vallet‐Regí,et al.  Recent advances in ceramic implants as drug delivery systems for biomedical applications , 2008, International journal of nanomedicine.

[172]  Wei Lu,et al.  Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. , 2010, Biomaterials.

[173]  M. Vallet‐Regí,et al.  Syntesis of Mesoporous Microparticles for Biomedical Applications , 2008 .

[174]  V. Torchilin,et al.  Tumor-Targeted Nanomedicines: Enhanced Antitumor Efficacy In vivo of Doxorubicin-Loaded, Long-Circulating Liposomes Modified with Cancer-Specific Monoclonal Antibody , 2009, Clinical Cancer Research.

[175]  Jiang Chang,et al.  Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. , 2008, Biomaterials.

[176]  M. Vallet‐Regí,et al.  Cell viability in a wet silica gel. , 2009, Acta biomaterialia.

[177]  M. Vallet‐Regí,et al.  MCM-41 Organic Modification as Drug Delivery Rate Regulator , 2003 .

[178]  N. Peppas,et al.  Hydrogels in Pharmaceutical Formulations , 1999 .

[179]  Byeong-Hyeok Sohn,et al.  Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials. , 2006, Small.

[180]  M. Fröba,et al.  Silica-based mesoporous organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[181]  S A Goldstein,et al.  Skeletal repair by in situ formation of the mineral phase of bone. , 1995, Science.

[182]  T. Park,et al.  Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. , 2011, Biomacromolecules.

[183]  C T Hung,et al.  Comparative disposition of adriamycin delivered via magnetic albumin microspheres in presence and absence of magnetic field in rats. , 1990, Life sciences.

[184]  S. Spriano,et al.  The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics. , 2005, Acta biomaterialia.

[185]  Yuan Yuan,et al.  A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. , 2011, Biomaterials.

[186]  D. Leslie-Pelecky,et al.  Iron oxide nanoparticles for sustained delivery of anticancer agents. , 2005, Molecular pharmaceutics.

[187]  M. Stevens,et al.  Engineering nanocomposite materials for cancer therapy. , 2010, Small.

[188]  Y. An,et al.  Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. , 1998, Journal of biomedical materials research.

[189]  María Vallet-Regí,et al.  Setting Behavior and in Vitro Bioactivity of Hydroxyapatite/Calcium Sulfate Cements , 2002 .

[190]  Chengtie Wu,et al.  Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity , 2009, Journal of The Royal Society Interface.

[191]  G. Bowlin,et al.  Endothelial Cell Seeding of a 4-mm I.D. Polyurethane Vascular Graft , 2002, Journal of biomaterials applications.

[192]  T. Coradin,et al.  Aqueous silicates in biological sol-gel applications: new perspectives for old precursors. , 2007, Accounts of chemical research.

[193]  Taeghwan Hyeon,et al.  Inorganic Nanoparticles for MRI Contrast Agents , 2009 .

[194]  Wenbo Zhou,et al.  Adenoviral Gene Delivery Can Reprogram Human Fibroblasts to Induced Pluripotent Stem Cells , 2009, Stem cells.

[195]  D. E. Miser,et al.  Preparation and characterization of (3-aminopropyl)triethoxysilane-modified mesoporous SBA-15 silica molecular sieves , 2005 .

[196]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[197]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[198]  Jing Lin,et al.  Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. , 2011, Biomaterials.

[199]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[200]  Brian G. Trewyn,et al.  Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration , 2008 .

[201]  D. Steyn,et al.  Triptorelin 6-Month Formulation in the Management of Patients with Locally Advanced and Metastatic Prostate Cancer , 2009, Clinical drug investigation.

[202]  Oana Bretcanu,et al.  Polymer-bioceramic composites for tissue engineering scaffolds , 2008 .

[203]  In-Kyu Park,et al.  Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. , 2010, Biomaterials.

[204]  Saqlain A. Shah,et al.  Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer , 2010 .

[205]  M. Vallet‐Regí,et al.  Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process. , 2011, Acta biomaterialia.

[206]  O. Terasaki,et al.  Ordered Mesoporous Microspheres for Bone Grafting and Drug Delivery , 2009 .

[207]  Michael J Sailor,et al.  Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. , 2008, Angewandte Chemie.

[208]  P. Kramer Letter: Albumin microspheres as vehicles for achieving specificity in drug delivery. , 1974, Journal of pharmaceutical sciences.

[209]  Niveen M. Khashab,et al.  Light-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[210]  Jan J. Heimans,et al.  Neurotoxic Complications of Chemotherapy in Patients with Cancer , 2012, Drugs.

[211]  John J. Schlager,et al.  Toxicity Evaluation for Safe Use of Nanomaterials: Recent Achievements and Technical Challenges , 2009 .

[212]  Peter Wust,et al.  Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. , 2010, The Lancet. Oncology.

[213]  A. C. Hunter,et al.  Nanomedicine: current status and future prospects , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[214]  María Vallet-Regí,et al.  Ceramics for medical applications , 2001 .

[215]  M. Vallet‐Regí,et al.  Time-Delayed Release of Bioencapsulates: A Novel Controlled Delivery Concept for Bone Implant Technologies , 2008 .

[216]  Y. Hung,et al.  Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells , 2009 .

[217]  M. Vallet‐Regí,et al.  The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics. , 2005, Biomaterials.

[218]  M. Vallet‐Regí,et al.  Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. , 2010, Acta biomaterialia.

[219]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[220]  V. S. Lin Nanomedicine: Veni, vidi, vici and then... vanished. , 2009, Nature materials.

[221]  Jwa-Min Nam,et al.  Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. , 2008, Nanomedicine.

[222]  A. Kis,et al.  Structure, microstructure, and magnetism in ferrimagnetic bioceramics. , 2005, Biomaterials.

[223]  Jiang Chang,et al.  A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. , 2008, Biomaterials.

[224]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[225]  A. Srinivasan,et al.  Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite , 2011 .

[226]  M. Vallet‐Regí,et al.  Synthesis Routes for Bioactive Sol−Gel Glasses: Alkoxides versus Nitrates , 2002 .

[227]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[228]  Chengtie Wu,et al.  Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering. , 2010, Acta biomaterialia.

[229]  M. Vallet‐Regí,et al.  Biphasic materials for bone grafting and hyperthermia treatment of cancer. , 2003, Journal of biomedical materials research. Part A.

[230]  Robia G. Pautler,et al.  Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response , 2009 .

[231]  J. Pou,et al.  Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. , 2003, Biomaterials.

[232]  S. Hsu,et al.  The use of peptide-delivery to protect human adipose-derived adult stem cells from damage caused by the internalization of quantum dots. , 2008, Biomaterials.

[233]  T. Kokubo,et al.  Bioactivity of ferrimagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2. , 1997, Biomaterials.

[234]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[235]  K A Gross,et al.  Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. , 2001, Journal of biomedical materials research.

[236]  Su Jin Heo,et al.  Three-Dimensional Mesoporous−Giantporous Inorganic/Organic Composite Scaffolds for Tissue Engineering , 2007 .

[237]  Jutaek Nam,et al.  pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. , 2009, Journal of the American Chemical Society.

[238]  D. Zhao,et al.  The in-vitro bioactivity of mesoporous bioactive glasses. , 2006, Biomaterials.

[239]  Dietmar Werner Hutmacher,et al.  Application of micro CT and computation modeling in bone tissue engineering , 2005, Comput. Aided Des..

[240]  Chengtie Wu,et al.  Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. , 2008, Acta biomaterialia.

[241]  M. Vallet‐Regí,et al.  Bimodal meso/macro porous hydroxyapatite coatings , 2011 .

[242]  J. Zink,et al.  Patterned Hexagonal Arrays of Living Cells in Sol−Gel Silica Films , 2000 .

[243]  Julian R. Jones New trends in bioactive scaffolds: The importance of nanostructure , 2009 .

[244]  T. Yamamuro,et al.  Localized hyperthermic treatment of experimental bone tumors with ferromagnetic ceramics , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[245]  Edmond Magner,et al.  Proteins in mesoporous silicates. , 2008, Angewandte Chemie.

[246]  Fabian Kiessling,et al.  Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy , 2010 .

[247]  M. Vallet‐Regí,et al.  Sol−Gel Glasses as Precursors of Bioactive Glass Ceramics , 2003 .

[248]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[249]  Ajay Kumar Gupta,et al.  Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. , 2007, Nanomedicine.

[250]  N A Peppas,et al.  New challenges in biomaterials. , 1994, Science.

[251]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[252]  M. Vallet‐Regí,et al.  Advanced Drug Delivery Vectors with Tailored Surface Properties Made of Mesoporous Binary Oxides Submicronic Spheres , 2010 .

[253]  Chad A Mirkin,et al.  Multiplexed DNA detection with biobarcoded nanoparticle probes. , 2006, Angewandte Chemie.

[254]  María Vallet-Regí,et al.  Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration , 2006 .

[255]  L L Hench,et al.  Surface-active biomaterials. , 1984, Science.

[256]  María Vallet-Regí,et al.  L-Trp adsorption into silica mesoporous materials to promote bone formation. , 2008, Acta biomaterialia.

[257]  M. Pickard,et al.  The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. , 2011, Biomaterials.

[258]  J Henke,et al.  Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo , 2002, Gene Therapy.

[259]  R. Sharma,et al.  Newer nanoparticles in hyperthermia treatment and thermometry , 2009 .

[260]  Catherine C. Berry,et al.  Functionalisation of magnetic nanoparticles for applications in biomedicine , 2003 .

[261]  Taolei Sun,et al.  Biomimetic Smart Interface Materials for Biological Applications , 2011, Advanced materials.

[262]  Pedro Tartaj,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2009 .

[263]  Chengtie Wu,et al.  Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[264]  M. Vallet‐Regí,et al.  Glasses with Medical Applications , 2003 .

[265]  Changyou Gao,et al.  Colloidal particles for cellular uptake and delivery , 2009 .

[266]  M. Vallet‐Regí,et al.  Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. , 2011, Chemical Society reviews.

[267]  Jiang Chang,et al.  Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[268]  María Vallet-Regí,et al.  An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature. , 2010, Acta biomaterialia.

[269]  Etienne Duguet,et al.  A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran , 2005 .

[270]  J. Overgaard,et al.  Effect of hyperthermia on malignant cells in vivo: A review and a hypothesis , 1977, Cancer.

[271]  W. Kaiser,et al.  Application of magnetite ferrofluids for hyperthermia , 1999 .

[272]  M. Vallet‐Regí,et al.  Surface electrochemistry of mesoporous silicas as a key factor in the design of tailored delivery devices. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[273]  C. Botting,et al.  Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve , 2001 .

[274]  Yu Zhang,et al.  Protective coating of superparamagnetic iron oxide nanoparticles , 2003 .

[275]  Rasmus Niemi,et al.  Targeting of porous hybrid silica nanoparticles to cancer cells. , 2009, ACS nano.

[276]  N. Kawazoe,et al.  In vitro Proliferation and Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells Cultured with Hardystonite (Ca2ZnSi 2O7) and β-TCP Ceramics , 2010, Journal of biomaterials applications.

[277]  J. Jansen,et al.  In vivo bone response to porous calcium phosphate cement. , 2003, Journal of biomedical materials research. Part A.

[278]  Robert Langer,et al.  Biocompatibility and drug delivery systems , 2010 .

[279]  G Gregoriadis,et al.  Drug-carrier potential of liposomes in cancer chemotherapy. , 1974, Lancet.

[280]  Tatsuo Nakamura,et al.  Bioactivity and Mechanical Properties of Polydimethylsiloxane (PDMS)-CaO-SiO2 Hybrids with Different PDMS Contents , 2001 .

[281]  Chengtie Wu,et al.  In vitro bioactivity of akermanite ceramics. , 2006, Journal of biomedical materials research. Part A.

[282]  M. Vallet‐Regí,et al.  Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. , 2003, Biomaterials.

[283]  David F. Williams On the nature of biomaterials. , 2009, Biomaterials.

[284]  Dongan Wang,et al.  Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. , 2009, Acta biomaterialia.

[285]  Younan Xia,et al.  Superparamagnetic Colloids: Controlled Synthesis and Niche Applications , 2007 .

[286]  M. Vallet‐Regí,et al.  The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. , 2010, Biomaterials.

[287]  Itaru Honma,et al.  Ultrasound‐Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite , 2006 .

[288]  M. Vallet‐Regí,et al.  Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting , 2007 .

[289]  George C Schatz,et al.  What controls the melting properties of DNA-linked gold nanoparticle assemblies? , 2000, Journal of the American Chemical Society.

[290]  Bengt Herbert Kasemo,et al.  Biological surface science , 1998 .

[291]  A. Gristina,et al.  Biomaterial-centered infection: microbial adhesion versus tissue integration. , 1987, Science.

[292]  R Langer,et al.  New methods of drug delivery. , 1990, Science.

[293]  M Epple,et al.  A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. , 2004, Biomaterials.

[294]  Chengtie Wu,et al.  Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. , 2005, Biomaterials.

[295]  M. Vallet‐Regí Evolution of bioceramics within the field of biomaterials , 2010 .

[296]  Samir Mitragotri,et al.  Physical approaches to biomaterial design. , 2009, Nature materials.

[297]  M. Vallet‐Regí,et al.  Hierarchical pore structure of calcium phosphate scaffolds by a combination of gel-casting and multiple tape-casting methods. , 2008, Acta biomaterialia.

[298]  H. Wieland,et al.  Reference values for serum silicon in adults. , 2005, Analytical biochemistry.

[299]  M. S. Muthu,et al.  Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. , 2009, Nanomedicine.

[300]  Victor S-Y Lin,et al.  Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. , 2011, Chemical communications.

[301]  L. Hench,et al.  Properties of bioactive glasses and glass-ceramics , 1998 .

[302]  M. Vallet‐Regí,et al.  Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. , 2011, Acta biomaterialia.

[303]  Bo Hye Kim,et al.  Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. , 2009, Biomaterials.

[304]  F. Lin,et al.  Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein--a viable scaffold for bone tissue engineering. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[305]  M. Vallet‐Regí,et al.  The in vivo performance of a sol-gel glass and a glass-ceramic in the treatment of limited bone defects. , 2004, Biomaterials.

[306]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[307]  X. Zhu,et al.  Polymer microspheres for controlled drug release. , 2004, International journal of pharmaceutics.

[308]  M. Vallet‐Regí,et al.  Mesoporous magnetic microspheres for drug targeting , 2008 .

[309]  Narendra Kumar Jain,et al.  Dendrimers in oncology: an expanding horizon. , 2009, Chemical reviews.

[310]  M. Vallet‐Regí,et al.  Calcium sulphate-based cements containing cephalexin. , 2004, Biomaterials.

[311]  Dong Wan,et al.  PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. , 2011, Chemical communications.

[312]  C. Serna,et al.  Single‐Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties , 2001 .

[313]  Clément Sanchez,et al.  Synthesis and Characterization of Mesostructured Titania-Based Materials through Evaporation-Induced Self-Assembly , 2002 .

[314]  K. Kobayashi,et al.  Gingival crevicular pH in experimental gingivitis and occlusal trauma in man. , 1998, Journal of periodontology.

[315]  Johann Kecht,et al.  A programmable DNA-based molecular valve for colloidal mesoporous silica. , 2010, Angewandte Chemie.

[316]  Yin Xiao,et al.  Structure-property relationships of silk-modified mesoporous bioglass scaffolds. , 2010, Biomaterials.

[317]  S. Polarz,et al.  Bifunctional Mesoporous Organosilica Materials and Their Application in Catalysis: Cooperative Effects or Not? , 2010 .

[318]  F. Jotterand Nanomedicine: how it could reshape clinical practice. , 2007, Nanomedicine.

[319]  S. Tsutsumi,et al.  Study of diopside ceramics for biomaterials , 1999, Journal of materials science. Materials in medicine.

[320]  Seung-eon Kim,et al.  Preparation of 3D cubic ordered mesoporous bioactive glasses , 2008 .

[321]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[322]  K. Hidajat,et al.  Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[323]  T. Yao,et al.  Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. , 2005, Biomaterials.

[324]  María Vallet-Regí,et al.  Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. , 2006, Chemistry.

[325]  Eunkeu Oh,et al.  Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. , 2008, Analytical chemistry.

[326]  M. Vallet‐Regí,et al.  The Sol–Gel Production of Bioceramics , 2008 .

[327]  María Vallet-Regí,et al.  Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitrogene magnetofection , 2011 .

[328]  M. Vallet‐Regí,et al.  Evolution of Ceramics with Medical Applications , 2007 .

[329]  Chung-Yuan Mou,et al.  Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. , 2008, Small.

[330]  Xufeng Zhou,et al.  Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. , 2004, Angewandte Chemie.

[331]  Yoshiaki Fukushima,et al.  Synthesis of highly ordered mesoporous materials from a layered polysilicate , 1993 .

[332]  M. Vallet‐Regí,et al.  Magnetic mesoporous silica spheres for hyperthermia therapy. , 2010, Acta biomaterialia.

[333]  María Vallet-Regí,et al.  Revisiting ceramics for medical applications. , 2006, Dalton transactions.

[334]  Giles Richardson,et al.  Mathematical modelling of magnetically targeted drug delivery , 2005 .

[335]  T. Coradin,et al.  Stability of Mesoporous Oxide and Mixed Metal Oxide Materials under Biologically Relevant Conditions , 2007 .

[336]  Chengtie Wu,et al.  The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. , 2008, Biomaterials.

[337]  M. Vallet‐Regí,et al.  Dip coated silicon-substituted hydroxyapatite films. , 2006, Acta biomaterialia.

[338]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[339]  C. Ohtsuki,et al.  Synthesis and In Vitro Behavior of Organically Modified Silicate Containing Ca Ions , 2001 .

[340]  M. Vallet‐Regí,et al.  Biocompatibility and in vivo gentamicin release from bioactive sol-gel glass implants. , 2002, Journal of biomedical materials research.

[341]  Eduardo Ruiz-Hitzky,et al.  Selective Functionalization of Mesoporous Silica , 2000 .

[342]  A. Lu,et al.  Fabrication of magnetically separable mesostructured silica with an open pore system. , 2004, Journal of the American Chemical Society.

[343]  Zongxi Li,et al.  Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. , 2010, Small.

[344]  K. Ulbrich,et al.  HPMA-based polymer therapeutics improve the efficacy of surgery, of radiotherapy and of chemotherapy combinations. , 2010, Nanomedicine.

[345]  Bruce M. Novak,et al.  Hybrid nanocomposite materials―between inorganic glasses and organic polymers , 1993 .

[346]  Gert Storm,et al.  Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system , 1995 .

[347]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[348]  Y. Suh,et al.  Multifunctional nanosystems at the interface of physical and life sciences , 2009 .

[349]  Chikara Ohtsuki,et al.  Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid , 1992 .

[350]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[351]  R. Misra,et al.  Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. , 2007, Acta biomaterialia.

[352]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[353]  O. Terasaki,et al.  High-performance mesoporous bioceramics mimicking bone mineralization , 2008 .

[354]  Robert Langer,et al.  Nanotechnology in drug delivery and tissue engineering: from discovery to applications. , 2010, Nano letters.

[355]  Julian R Jones,et al.  Bioactive sol-gel foams for tissue repair. , 2002, Journal of biomedical materials research.

[356]  C. Ozkan,et al.  Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. , 2007, Cancer research.

[357]  Y. Korogi,et al.  Definitive radiotherapy plus regional hyperthermia with or without chemotherapy for superior sulcus tumors: a 20-year, single center experience. , 2011, Lung cancer.

[358]  Michael Famulok,et al.  Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. , 2008, Angewandte Chemie.

[359]  M. Vallet‐Regí,et al.  Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants , 2005 .

[360]  O. Terasaki,et al.  Mesoporous Microspheres with Doubly Ordered Core−Shell Structure , 2009 .

[361]  G. Pizzolo,et al.  Plasmacytoid dendritic cell leukemia: a rapidly evolving disease presenting with skin lesions sensitive to radiotherapy plus hyperthermia. , 2009, The oncologist.

[362]  F. Guitián,et al.  Bioactivity of pseudowollastonite in human saliva. , 1999, Journal of dentistry.

[363]  Francesco Baino,et al.  Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. , 2011, Journal of biomedical materials research. Part A.

[364]  Ruth Duncan,et al.  Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. , 2009, Advanced drug delivery reviews.

[365]  M. Vallet‐Regí,et al.  Static and dynamic in vitro study of a sol-gel glass bioactivity. , 2001, Biomaterials.

[366]  G. R. Mansfield,et al.  Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma. , 1983, Radiation research.

[367]  Seung-eon Kim,et al.  Design and preparation of bioactive glasses with hierarchical pore networks. , 2007, Chemical communications.

[368]  María J Vicent,et al.  Polymer therapeutics: clinical applications and challenges for development. , 2009, Advanced drug delivery reviews.

[369]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[370]  J. Salonen,et al.  Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles , 2005 .

[371]  R. Duncan The dawning era of polymer therapeutics , 2003, Nature Reviews Drug Discovery.

[372]  M. Vallet‐Regí,et al.  Revisiting silica based ordered mesoporous materials: medical applications , 2006 .

[373]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[374]  Shaobin Wang,et al.  Ordered mesoporous materials for drug delivery , 2009 .

[375]  Xiaohu Gao,et al.  Encapsulation of Single Quantum Dots with Mesoporous Silica , 2009, Annals of Biomedical Engineering.

[376]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[377]  C. Mou,et al.  Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. , 2010, Angewandte Chemie.

[378]  E. Wickstrom,et al.  Nanotechnology for sensing, imaging, and treating cancer. , 2007, Surgical oncology clinics of North America.

[379]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[380]  Di Zhang,et al.  Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release , 2007 .

[381]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[382]  M. Vallet‐Regí,et al.  Functionalizing mesoporous bioglasses for long-term anti-osteoporotic drug delivery. , 2010, Chemistry.

[383]  D. Lewinson,et al.  PTHrP(107–111) Inhibits In Vivo Resorption that was Stimulated by PTHrP(1–34) When Applied Intermittently to Neonatal Mice , 1997, Calcified Tissue International.

[384]  María Vallet-Regí,et al.  Bioactive Star Gels , 2006 .

[385]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[386]  In-Seop Lee,et al.  The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. , 2005, The International journal of oral & maxillofacial implants.

[387]  A R Boccaccini,et al.  Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements. , 2007, Journal of biomedical materials research. Part A.

[388]  M. Vallet‐Regí,et al.  Biopolymer-coated hydroxyapatite foams: a new antidote for heavy metal intoxication , 2010 .

[389]  S. Garg,et al.  Bioadhesive microspheres as a controlled drug delivery system. , 2003, International journal of pharmaceutics.

[390]  K. de Groot,et al.  Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. , 2001, Biomaterials.

[391]  M. Jaroniec,et al.  Simultaneous modification of mesopores and extraction of template molecules from MCM-41 with trialkylchlorosilanes , 1999 .

[392]  W. Shier,et al.  Dendrimeric Alkylated Polyethylenimine Nano-carriers with Acid-Cleavable Outer Cationic Shells Mediate Improved Transfection Efficiency Without Increasing Toxicity , 2010, Pharmaceutical Research.

[393]  Stefan Kaskel,et al.  Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds , 2009 .

[394]  Christian Plank,et al.  Generation of magnetic nonviral gene transfer agents and magnetofection in vitro , 2007, Nature Protocols.

[395]  M. Vallet‐Regí,et al.  Bioactive Carbonate−Hydroxyapatite Coatings Deposited onto Ti6Al4V Substrate , 2004 .

[396]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[397]  Samantha J. Polak,et al.  Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds. , 2011, Acta biomaterialia.

[398]  P. N. Aza,et al.  Bioactivity of wollastonite ceramics: In vitro evaluation , 1994 .

[399]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[400]  R. Murthy,et al.  Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[401]  Yuhan Sun,et al.  Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[402]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[403]  E. M. Carlisle Silicon: An Essential Element for the Chick , 1972, Science.

[404]  M. Vallet‐Regí,et al.  The in vivo behaviour of a sol-gel glass and a glass-ceramic during critical diaphyseal bone defects healing. , 2005, Biomaterials.

[405]  Xuesi Chen,et al.  In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). , 2009, Biomaterials.