Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery

[1]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[2]  Albert Olioso,et al.  An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S) , 2014 .

[3]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[4]  Pablo J. Zarco-Tejada,et al.  Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective , 2013 .

[5]  Reuben Nilus,et al.  The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate , 2015, Agricultural and forest meteorology.

[6]  V. Caselles,et al.  Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination , 2007 .

[7]  Terry A. Howell,et al.  Investigating the influence of roughness length for heat transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems , 2014 .

[8]  Assefa M. Melesse,et al.  A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields , 2007, Sensors (Basel, Switzerland).

[9]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[10]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[11]  Thomas Foken,et al.  Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software , 2007 .

[12]  Behzad Ahmadi,et al.  Remote Sensing of Water Use Efficiency and Terrestrial Drought Recovery across the Contiguous United States , 2019, Remote. Sens..

[13]  Wout Verhoef,et al.  Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions , 2012 .

[14]  A. Chehbouni,et al.  Comments on dual-source vegetation–atmosphere transfer models , 1999 .

[15]  Chenghu Zhou,et al.  A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data , 2009, Sensors.

[16]  R. Myneni,et al.  On the relationship between FAPAR and NDVI , 1994 .

[17]  Eva Rubio,et al.  Thermal–infrared emissivities of natural surfaces: improvements on the experimental set-up and new measurements , 2003 .

[18]  William P. Kustas,et al.  Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations , 2008 .

[19]  A. Berg,et al.  Present and future Köppen-Geiger climate classification maps at 1-km resolution , 2018, Scientific Data.

[20]  ESTIMATION OF NET RADIATION USING SATELLITE BASED DATA INPUTS , 2014 .

[21]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[22]  W. Lucht,et al.  Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model , 2004 .

[23]  Bingfang Wu,et al.  Estimating Evapotranspiration from an Improved Two-Source Energy Balance Model Using ASTER Satellite Imagery , 2015 .

[24]  Paul D. Colaizzi,et al.  Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures☆ , 2012 .

[25]  William P. Kustas,et al.  A two‐source approach for estimating turbulent fluxes using multiple angle thermal infrared observations , 1997 .

[26]  Hongbo Su,et al.  An enhanced two-source evapotranspiration model for land (ETEML): Algorithm and evaluation , 2015 .

[27]  Yan Xu,et al.  Evapotranspiration of a drip‐irrigated, film‐mulched cotton field in northern Xinjiang, China , 2012 .

[28]  Rae Mackay,et al.  Spatial variation in evapotranspiration and the influence of land use on catchment hydrology , 1995 .

[29]  Mohsin Hafeez,et al.  Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia , 2013, Theoretical and Applied Climatology.

[30]  R. Dickinson,et al.  A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability , 2011 .

[31]  Frank Veroustraete,et al.  Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation , 2008, Sensors.

[32]  Chaoqun Lu,et al.  Global gross primary productivity and water use efficiency changes under drought stress , 2017 .

[33]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[34]  E. Hasenmueller,et al.  Water Balance Estimates of Evapotranspiration Rates in Areas with Varying Land Use , 2013 .

[35]  V. Singh,et al.  A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery , 2012 .

[36]  L. Amekudzi,et al.  Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa , 2015, Carbon Balance and Management.

[37]  Issa Ouedraogo,et al.  Is rural migration a threat to environmental sustainability in Southern Burkina Faso? , 2009 .

[38]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[39]  H. Schmid,et al.  A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP) , 2015 .

[40]  M. Mauder,et al.  Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3 , 2014 .

[41]  W. Bastiaanssen SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey , 2000 .

[42]  William P. Kustas,et al.  Use of remote sensing for evapotranspiration monitoring over land surfaces , 1996 .

[43]  H. Nieto,et al.  Environmental factors affecting the accuracy of surface fluxes from a two-source model in Mediterranean drylands: Upscaling instantaneous to daytime estimates , 2014 .

[44]  Gautam Bisht,et al.  Estimation of Net Radiation From the Moderate Resolution Imaging Spectroradiometer Over the Continental United States , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Albert Olioso,et al.  Evaluation and Aggregation Properties of Thermal Infra-Red-Based Evapotranspiration Algorithms from 100 m to the km Scale over a Semi-Arid Irrigated Agricultural Area , 2017, Remote. Sens..

[46]  Yuanyuan Wang,et al.  Validation of the SEBS-derived sensible heat for FY3A/VIRR and TERRA/MODIS over an alpine grass region using LAS measurements , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[47]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[48]  Prasanna H. Gowda,et al.  Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach , 2013 .

[49]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[50]  Thomas J. Jackson,et al.  Utility of Remote Sensing–Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions , 2005 .

[51]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[52]  Jie Cheng,et al.  Using Very High Resolution Thermal Infrared Imagery for More Accurate Determination of the Impact of Land Cover Differences on Evapotranspiration in an Irrigated Agricultural Area , 2019, Remote. Sens..

[53]  Juan C. Jiménez-Muñoz,et al.  Feasibility of Retrieving Land-Surface Temperature From ASTER TIR Bands Using Two-Channel Algorithms: A Case Study of Agricultural Areas , 2007, IEEE Geoscience and Remote Sensing Letters.

[54]  H. Nouri,et al.  Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces , 2013 .

[55]  Zhanqing Li,et al.  A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature , 2007 .

[56]  Martha C. Anderson,et al.  Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship , 2003 .

[57]  Martha C. Anderson,et al.  A comparison of operational remote sensing-based models for estimating crop evapotranspiration , 2009 .

[58]  P. Ceccato,et al.  Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints , 2013 .

[59]  Changming Liu,et al.  Seasonal variation of energy partitioning in irrigated lands , 2004 .

[60]  S. Nicholson The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability , 2013 .

[61]  J. Norman,et al.  Surface flux estimation using radiometric temperature: A dual‐temperature‐difference method to minimize measurement errors , 2000 .

[62]  Martha C. Anderson,et al.  A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales , 2008 .

[63]  U. Gessner,et al.  The WASCAL Hydrometeorological Observatory in the Sudan Savanna of Burkina Faso and Ghana , 2018 .

[64]  A. Bawazir,et al.  Using ASTER satellite data to calculate riparian evapotranspiration in the Middle Rio Grande, New Mexico , 2009 .

[65]  Keith E. Schilling,et al.  Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis , 2006 .

[66]  Enric Valor,et al.  Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region , 2008 .

[67]  Frans T. M. Nieuwstadt,et al.  Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes , 1983 .

[68]  D. Vanella,et al.  Comparisons of satellite-based models for estimating evapotranspiration fluxes , 2014 .

[69]  K. Davis,et al.  Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data , 2010 .

[70]  T. Foken,et al.  Tools for quality assessment of surface-based flux measurements , 1996 .

[71]  B. Bezerra,et al.  Surface energy exchange and evapotranspiration from cotton crop under full irrigation conditions in the Rio Grande do Norte State, Brazilian Semi-Arid , 2015 .

[72]  H. Turral,et al.  Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[73]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[74]  Christopher Conrad,et al.  Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa , 2017, Remote. Sens..

[75]  John M. Norman,et al.  Estimating Fluxes on Continental Scales Using Remotely Sensed Data in an Atmospheric–Land Exchange Model , 1999 .

[76]  Thomas Foken,et al.  Corrections and data quality control , 2012 .

[77]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .