Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

[1]  C. Steefel,et al.  Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media , 2017 .

[2]  Veerle Cnudde,et al.  Effect of dissolved H2SO4 on the interaction between CO2-rich brine solutions and limestone, sandstone and marl , 2017 .

[3]  J. Soler,et al.  2D reactive transport modeling of the interaction between a marl and a CO2-rich sulfate solution under supercritical CO2 conditions , 2016 .

[4]  K. Knauss,et al.  Does crystallographic anisotropy prevent the conventional treatment of aqueous mineral reactivity? A case study based on K-feldspar dissolution kinetics , 2016 .

[5]  Li Yang,et al.  Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment , 2016, Geochimica et Cosmochimica Acta.

[6]  M. Turpault,et al.  Effect of particle size on the experimental dissolution and auto-aluminization processes of K-vermiculite , 2016 .

[7]  E. Tertre,et al.  Dissolution of beidellite in acidic solutions: Ion exchange reactions and effect of crystal chemistry on smectite reactivity , 2016 .

[8]  S. Carroll,et al.  Chlorite dissolution kinetics at pH 3–10 and temperature to 275°C , 2016 .

[9]  G. Darbha,et al.  Influence of mineralogical and morphological properties on the cation exchange behavior of dioctahedral smectites , 2015 .

[10]  D. DePaolo,et al.  The Nanoscale Basis of CO2 Trapping for Geologic Storage. , 2015, Environmental science & technology.

[11]  W. Seyfried,et al.  CO 2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties , 2015 .

[12]  Thomas Kalbacher,et al.  Reactive transport codes for subsurface environmental simulation , 2015, Computational Geosciences.

[13]  S. Carroll,et al.  Rates of mineral dissolution under CO2 storage conditions , 2015 .

[14]  Christophe Tournassat,et al.  A database of dissolution and precipitation rates for clay-rocks minerals , 2015 .

[15]  C. Steefel,et al.  Chemical affinity and pH effects on chlorite dissolution kinetics under geological CO2 sequestration related conditions , 2015 .

[16]  T. Schäfer,et al.  Variability of crystal surface reactivity: What do we know? , 2014 .

[17]  E. Oelkers,et al.  Biotite surface chemistry as a function of aqueous fluid composition , 2014 .

[18]  R. Arvidson,et al.  A stochastic treatment of crystal dissolution kinetics , 2013 .

[19]  H. Satoh,et al.  Dissolution of compacted montmorillonite at hyperalkaline pH and 70ºC: in situ VSI and ex situ AFM measurements , 2013, Clay Minerals.

[20]  R. Arvidson,et al.  How predictable are dissolution rates of crystalline material , 2012 .

[21]  R. Arvidson,et al.  Does the stepwave model predict mica dissolution kinetics , 2012 .

[22]  Thierry Epicier,et al.  Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: A study based on the nanometer-scale chemistry of fluid–silicate interfaces , 2012 .

[23]  A. Razafitianamaharavo,et al.  Dissolution kinetics of synthetic Na-smectite. An integrated experimental approach , 2011 .

[24]  Balwant Singh,et al.  Dissolution of illite in saline–acidic solutions at 25 °C , 2011 .

[25]  C. Cappelli,et al.  Effect of lactate, glycine, and citrate on the kinetics of montmorillonite dissolution , 2011 .

[26]  G. Giudici,et al.  Fluorite dissolution at acidic pH: In situ AFM and ex situ VSI experiments and Monte Carlo simulations , 2010 .

[27]  R. Hellmann,et al.  The dependence of albite feldspar dissolution kinetics on fluid saturation state at acid and basic pH: Progress towards a universal relation , 2010 .

[28]  E. Oelkers,et al.  The surface chemistry of multi-oxide silicates , 2009 .

[29]  P. Brady,et al.  Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution , 2009 .

[30]  P. Brady,et al.  Surface chemistry of K-montmorillonite: ionic strength, temperature dependence and dissolution kinetics. , 2009, Journal of colloid and interface science.

[31]  Patrick V. Brady,et al.  Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25 °C , 2008 .

[32]  P. Schweda,et al.  Rates and nonstoichiometry of vermiculite dissolution at 22°C , 2007 .

[33]  C. Steefel,et al.  Kaolinite dissolution and precipitation kinetics at 22 °C and pH 4 , 2007 .

[34]  A. Putnis,et al.  The mechanism of reequilibration of solids in the presence of a fluid phase , 2007 .

[35]  Luigi Marini,et al.  Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling , 2006 .

[36]  O. Pokrovsky,et al.  Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 °C , 2006 .

[37]  Y. Kuwahara In-situ AFM study of smectite dissolution under alkaline conditions at room temperature , 2006 .

[38]  M. Hodson Does reactive surface area depend on grain size? Results from pH 3, 25 °C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite , 2006 .

[39]  E. Caballero,et al.  Bentonites from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview , 2005, Clay Minerals.

[40]  J. Ganor,et al.  The combined effect of pH and temperature on smectite dissolution rate under acidic conditions , 2005 .

[41]  J. Ganor,et al.  Towards the establishment of a reliable proxy for the reactive surface area of smectite , 2005 .

[42]  E. Oelkers,et al.  Do clay mineral dissolution rates reach steady state , 2005 .

[43]  Tsutomu Sato,et al.  Atomic force microscopy study of montmorillonite dissolution under highly alkaline conditions , 2005 .

[44]  J. Ganor,et al.  Stoichiometry of smectite dissolution reaction , 2005 .

[45]  S. Brantley,et al.  The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? , 2003 .

[46]  L. Charlet,et al.  Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations , 2003 .

[47]  J. Ganor,et al.  The effect of pH and temperature on kaolinite dissolution rate under acidic conditions , 2002 .

[48]  Eric H. Oelkers,et al.  General kinetic description of multioxide silicate mineral and glass dissolution , 2001 .

[49]  L. Charlet,et al.  In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms , 2001 .

[50]  L. Charlet,et al.  The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy , 2000 .

[51]  P. Vieillard A New Method for the Prediction of Gibbs Free Energies of Formation of Hydrated Clay Minerals Based on the Electronegativity Scale , 2000 .

[52]  J. Ganor,et al.  Smectite dissolution kinetics at 80°C and pH 8.8 , 2000 .

[53]  A. Lasaga,et al.  The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state , 2000 .

[54]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study , 1999 .

[55]  R. Cygan,et al.  Gibbsite growth kinetics on gibbsite, kaolinite, and muscovite substrates: atomic force microscopy evidence for epitaxy and an assessment of reactive surface area , 1999 .

[56]  A. Bauer,et al.  Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C , 1998 .

[57]  S. Carroll,et al.  Amorphous silica precipitation (60 to 120°C): comparison of laboratory and field rates , 1998 .

[58]  J. Dandurand,et al.  An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8 , 1997 .

[59]  P. Schindler,et al.  The proton promoted dissolution kinetics of K-montmorillonite , 1996 .

[60]  P. Schweda,et al.  Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature , 1996 .

[61]  P. Schindler,et al.  Cation adsorption on oxides and clays: The aluminum case , 1993, Aquatic Sciences.

[62]  A. Lasaga,et al.  Free energy dependence of albite dissolution kinetics at 80°C and pH 8.8 , 1993 .

[63]  A. Lasaga,et al.  Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3: The dependence on solution saturation state , 1992 .

[64]  A. Lasaga,et al.  Dissolution and precipitation kinetics of kaolinite at 80 degrees C and pH 3; the dependence on solution saturation state , 1991 .

[65]  G. Sposito,et al.  Interactions of Citric Acid and Synthetic Hydroxy-Aluminum Montmorillonite , 1991 .

[66]  Philip Fletcher,et al.  The chemical modelling of clay/electrolyte interactions for montmorillonite , 1989, Clay Minerals.

[67]  A. Pochini,et al.  Genesis of bentonites from Cabo de Gata, Almeria, Spain: a stable isotope study , 1983, Clay Minerals.

[68]  G. Gaines,et al.  Adsorption Studies on Clay Minerals. II. A Formulation of the Thermodynamics of Exchange Adsorption , 1953 .

[69]  P. H. Tracy,et al.  A 1,10—Phenanthroline Method for the Determination of Iron in Powdered Milk , 1945 .

[70]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[71]  S. Molins Reactive Interfaces in Direct Numerical Simulation of Pore-Scale Processes , 2015 .

[72]  S. Gaboreau,et al.  Thermodynamics of Clay Minerals , 2013 .

[73]  B. Strömberg,et al.  Testing geochemical models of bentonite pore water evolution against laboratory experimental data , 2011 .

[74]  Z. Obrenović,et al.  Stability of tris-1,10 - phenanthroline iron (II) complex in different composites , 2010 .

[75]  Jae Owan Lee,et al.  Smectite alteration and its influence on the barrier properties of smectite clay for a repository , 2010 .

[76]  Oleg S. Pokrovsky,et al.  The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry , 2009 .

[77]  M. Hodson Searching for the perfect surface area normalizing term—a comparison of BET surface area-, geometric surface area- and mass-normalized dissolution rates of anorthite and biotite , 2006 .

[78]  M. Bradbury,et al.  Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier , 2004 .

[79]  A. Fernández,et al.  Pore Water Chemistry of the Febex Bentonite , 2000 .

[80]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[81]  A. Watt,et al.  Determination of dissolved aluminium by the micelle-enhanced fluorescence of its lumogallion complex , 1986 .

[82]  James R. Barrante Applied Mathematics for Physical Chemistry , 1974 .