Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells

[1]  Dennis W. Smith,et al.  Modular Approach to Chromophore Encapsulation in Fluorinated Arylene Vinylene Ether Polymers Possessing Tunable Photoluminescence , 2008 .

[2]  J. Ballato,et al.  Synthesis and characterization of highly fluorescent phenylene vinylene containing perfluorocyclobutyl (PFCB) aromatic ether polymers , 2008 .

[3]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[4]  S. T. Iacono,et al.  Science and technology of perfluorocyclobutyl aryl ether polymers , 2007 .

[5]  P. Cañizares,et al.  PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability , 2007 .

[6]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[7]  K. Miyatake,et al.  Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications , 2005 .

[8]  Jingli Luo,et al.  Propane fuel cells using phosphoric-acid-doped polybenzimidazole membranes. , 2005, The journal of physical chemistry. B.

[9]  Brian C. Benicewicz,et al.  Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications , 2005 .

[10]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[11]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[12]  Qingfeng Li,et al.  Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells , 2004 .

[13]  P. Gómez‐Romero,et al.  Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes , 2004 .

[14]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[15]  Li Qingfeng,et al.  Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications , 2001 .

[16]  Qunhui Guo,et al.  Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes , 1999 .

[17]  Y. So,et al.  Mechanism of Polyphosphoric Acid and Phosphorus Pentoxide−Methanesulfonic Acid as Synthetic Reagents for Benzoxazole Formation , 1997 .

[18]  Robert F. Savinell,et al.  Real‐Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell , 1996 .

[19]  R. Savinell,et al.  Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments , 1996 .

[20]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .

[21]  Alvin P. Kennedy,et al.  Perfluorocyclobutane aromatic ether polymers , 1993 .

[22]  P. Eaton,et al.  Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid , 1973 .