Relativistic contributions to molecular electric-field gradients in hydrogen halides

[1]  M. Urban,et al.  The nuclear quadrupole moment of Li : refined calculations of electric field gradients in LiH, LiF, and LiCl , 1990 .

[2]  G. Bacskay A quantum chemical study of the HBr and HCN...HBr molecules: the effects of hydrogen bonding on molecular properties , 1989 .

[3]  G. Diercksen,et al.  A possible determination of the nuclear quadrupole moment of 9Be from molecular calculations of electric properties of BeH , 1989 .

[4]  G. Diercksen,et al.  Towards an accurate determination of the nuclear quadrupole moment of Li from molecular data: LiF , 1988 .

[5]  K. Balasubramanian,et al.  Electronic dipole and transition moments from the relativistic CI wave function: Application to HI , 1987 .

[6]  G. Scuseria,et al.  The nuclear quadrupole moment of 14N. A theoretical prediction from full valence shell and full configuration interaction atomic wave functions , 1987 .

[7]  B. A. Hess,et al.  Relativistic ab initio CI study of the X1Σ+ and A1Σ+ states of the AgH molecule , 1987 .

[8]  N. Hush,et al.  The prediction of nuclear quadrupole moments from ab initio quantum chemical studies on small molecules. II. The electric field gradients at the 17O, 35Cl, and 2H nuclei in CO, NO+, OH−, H2O, CH2O, HCl, LiCl, and FCl , 1987 .

[9]  N. Hush,et al.  The prediction of nuclear quadrupole moments from abinitio quantum chemical studies on small molecules. I. The electric field gradients at the 14N and 2H nuclei in N2, NO, NO+, CN, CN−, HCN, HNC, and NH3 , 1987 .

[10]  David Feller,et al.  One‐electron properties of several small molecules using near Hartree–Fock limit basis sets , 1987 .

[11]  G. Diercksen,et al.  Finite-field many-body perturbation theory. X. Electric field gradients and other properties of N2 , 1986 .

[12]  P. Pyykkö,et al.  Nuclear quadrupole moment of nitrogen from combined fully numerical and discrete basis-set calculations on NO+ and N2 , 1986 .

[13]  Rodney J. Bartlett,et al.  Fifth-Order Many-Body Perturbation Theory and Its Relationship to Various Coupled-Cluster Approaches* , 1986 .

[14]  B. Roos,et al.  Polarized basis sets for accurate predictions of molecular electric properties. Electric moments of the LiH molecule , 1985 .

[15]  P. Pyykkö,et al.  Nuclear quadrupole moment of lithium from combined fully numerical and discrete basis-set calculations on LiH , 1984 .

[16]  J. Noga Calculation of the fourth-order triple-excitation contribution to MB RSPT by using spatial symmetry properties of molecules , 1983 .

[17]  Richard L. Martin,et al.  All-electron relativistic calculations on silver hydride. An investigation of the Cowan-Griffin operator in a molecular species , 1983 .

[18]  G. Diercksen,et al.  Unlinked cluster effects in limited CI calculations of molecular properties , 1981 .

[19]  G. Diercksen,et al.  Legitimate calculation of first-order molecular properties in the case of limited CI functions. Dipole moments , 1981 .

[20]  A. J. Sadlej Perturbation theory of the electron correlation effects for atomic and molecular properties , 1981 .

[21]  J. Noga,et al.  The fourth order diagrammatic MB‐RSPT calculations of the correlation energy of ten electron systems , 1980 .

[22]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .

[23]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[24]  A. D. McLean,et al.  Electronic structure of linear halogen compounds , 1974 .

[25]  E. Tiemann,et al.  Microwave Spectral Tables I. Diatomic Molecules , 1974 .

[26]  G. Fuller Nuclear Spins and Moments , 1976 .

[27]  J. W. Moskowitz,et al.  One-Electron Properties of Near-Hartree-Fock Wavefunctions. I. Water , 1968 .