Mixed mode oscillations in the Bonhoeffer-van der Pol oscillator with weak periodic perturbation
暂无分享,去创建一个
[1] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[2] John Guckenheimer,et al. Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..
[3] Kuniyasu Shimizu,et al. Mixed-mode oscillations and chaos from a simple second-order oscillator under weak periodic perturbation , 2011 .
[4] John Guckenheimer,et al. Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..
[5] M. Krupa,et al. Local analysis near a folded saddle-node singularity , 2010 .
[6] Peter Szmolyan,et al. Relaxation oscillations in R3 , 2004 .
[7] Freddy Dumortier,et al. Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .
[8] Valery Petrov,et al. Mixed‐mode oscillations in chemical systems , 1992 .
[9] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[10] M. Krupa,et al. Relaxation Oscillation and Canard Explosion , 2001 .
[11] Takashi Hikihara,et al. Period-doubling cascades of canards from the extended Bonhoeffer–van der Pol oscillator , 2010 .
[12] John Guckenheimer,et al. The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..
[13] Nancy Kopell,et al. Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..
[14] Eugene M. Izhikevich,et al. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .
[15] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[16] Yuri A. Kuznetsov,et al. MATCONT: a Matlab package for numerical bifurcation analysis of ODEs , 2004, SIGS.