Mixed mode oscillations in the Bonhoeffer-van der Pol oscillator with weak periodic perturbation

Following the paper of Shimizu et al. (Phys Lett A 375:1566, 2011), we consider the Bonhoeffer-van der Pol oscillator with non-autonomous periodic perturbation. We show that the presence of mixed mode oscillations reported in that paper can be explained using the geometric singular perturbation theory. The considered model can be re-written as a four-dimensional (locally three-dimensional) autonomous system, which under certain conditions has a folded saddle-node singularity and additionally can be treated as a three time scale one.

[1]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[2]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[3]  Kuniyasu Shimizu,et al.  Mixed-mode oscillations and chaos from a simple second-order oscillator under weak periodic perturbation , 2011 .

[4]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[5]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[6]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[7]  Freddy Dumortier,et al.  Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .

[8]  Valery Petrov,et al.  Mixed‐mode oscillations in chemical systems , 1992 .

[9]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[10]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[11]  Takashi Hikihara,et al.  Period-doubling cascades of canards from the extended Bonhoeffer–van der Pol oscillator , 2010 .

[12]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[13]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[14]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[15]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[16]  Yuri A. Kuznetsov,et al.  MATCONT: a Matlab package for numerical bifurcation analysis of ODEs , 2004, SIGS.