Critical components for diamond-based quantum coherent devices

The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided.

[1]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[2]  M. Shahriar,et al.  Solid State Quantum Computing Using Spectral Holes , 2000, quant-ph/0007074.

[3]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[4]  David N. Jamieson,et al.  Raman investigation of damage caused by deep ion implantation in diamond , 2000 .

[5]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[6]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[7]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[8]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  A. Greentree,et al.  Strengths of dressed states transitions , 1999 .

[10]  James E. Butler,et al.  Single-Qubit Operations with the Nitrogen-Vacancy Center in Diamond , 2002 .

[11]  Steven Prawer,et al.  Ion implantation of diamond and diamond films , 1995 .

[12]  Richard G. Brewer,et al.  Photo Echo and Optical Nutation in Molecules , 1971 .

[13]  Andrew D. Greentree,et al.  Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms , 2006 .

[14]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[15]  Pal Molian,et al.  Micro- and Sub-Micromachining of Type IIa Single Crystal Diamond Using a Ti:Sapphire Femtosecond Laser , 2002 .

[16]  Prawer,et al.  Ion-beam-induced transformation of diamond. , 1995, Physical review. B, Condensed matter.

[17]  S. Prawer,et al.  Confocal Raman strain mapping of isolated single CVD diamond crystals , 1998 .

[18]  A. T. Collins,et al.  Luminescence decay time of the 1.945 eV centre in type Ib diamond , 1983 .

[19]  Pelle Rangsten,et al.  Diamond microstructures for optical micro electromechanical systems , 1999 .

[20]  K. Catchpole,et al.  Probing a doubly driven two-level atom , 1999 .

[21]  D. Moses,et al.  Electrochemical Patterning of Amorphous Carbon on Diamond , 1993 .

[22]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[23]  N. Manson,et al.  Observation of electromagnetically induced transparency within an electron spin resonance transition , 1999 .

[24]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[25]  M. Geis,et al.  Summary Abstract: Device applications of diamonds , 1988 .

[26]  Lukin,et al.  Quantum entanglement via optical control of atom-atom interactions , 2000, Physical review letters.

[27]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[28]  Brant C. Gibson,et al.  Ion‐Beam‐Assisted Lift‐Off Technique for Three‐Dimensional Micromachining of Freestanding Single‐Crystal Diamond , 2005 .

[29]  J. Meijer,et al.  Generation of single color centers by focused nitrogen implantation , 2005 .

[30]  David N. Jamieson,et al.  Materials Analysis Using a Nuclear Microprobe , 1996 .

[31]  T. Spiller,et al.  Efficient optical quantum information processing , 2005, quant-ph/0506116.

[32]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[33]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[34]  Quantum process tomography of a single solid state qubit , 2005, quant-ph/0503153.

[35]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[36]  J. Wrachtrup,et al.  Quantum process tomography and Linblad estimation of a solid-state qubit , 2006, quant-ph/0601167.

[37]  Roger M. Wood,et al.  Optical properties of diamond: a data handbook: A.M. Zaitsev; University of Bochum, Germany, Springer, Berlin, 2001, p. 502, price £74.00 hardback, ISBN 3-540-66582-X , 2004 .

[38]  Yong Qing Fu,et al.  Patterning of diamond microstructures by bulk and surface micromachining for MEMS devices , 2001, SPIE MOEMS-MEMS.

[39]  S. Prawer,et al.  Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding , 2005 .

[40]  J. Posthill,et al.  Single‐crystal diamond plate liftoff achieved by ion implantation and subsequent annealing , 1992 .

[41]  E. B. Davies,et al.  Quantum communication systems (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[42]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[43]  J. Wrachtrup,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[44]  Bernd Köhler,et al.  Generation and detection of fluorescent color centers in diamond with submicron resolution , 1999 .

[45]  Neil B. Manson,et al.  Perturbing an electromagnetic induced transparency within an inhomogeneously broadened transition , 2003 .

[46]  J. Hunn,et al.  The separation of thin single crystal films from bulk diamond by MeV implantation , 1995 .

[47]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical Review Letters.

[48]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[49]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[50]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[51]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[52]  Christopher C. Gerry,et al.  GENERATION OF OPTICAL MACROSCOPIC QUANTUM SUPERPOSITION STATES VIA STATE REDUCTION WITH A MACH-ZEHNDER INTERFEROMETER CONTAINING A KERR MEDIUM , 1999 .

[53]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[54]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[55]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[56]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[57]  Brian H. Houston,et al.  Nanomechanical Resonant Structures in Nanocrystalline Diamond , 2002 .

[58]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[59]  Prins Activation of boron-dopant atoms in ion-implanted diamonds. , 1988, Physical review. B, Condensed matter.

[60]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[61]  Yongqi Fu,et al.  Investigation of diffractive optical element fabricated on diamond film by use of focused ion beam direct milling , 2003 .

[62]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[63]  Ahsan Nazir,et al.  Optical schemes for quantum computation in quantum dot molecules , 2003 .

[64]  R. Kalish,et al.  Nitrogen doping of diamond by ion implantation , 1997 .

[65]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[66]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[67]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[68]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[69]  Mikael Karlsson,et al.  Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. , 2003, Optics express.

[70]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[71]  C. Santori,et al.  Coherent population trapping in diamond N-V centers at zero magnetic field , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[72]  Y. Mita,et al.  Color Centers in Annealing of Neutron-Irradiated Type Ib and Ia Diamonds , 1991 .

[73]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[74]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[75]  S. Rand,et al.  Origin of persistent hole burning of N–V centers in diamond , 1992 .

[76]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[77]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[78]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[79]  T. Kennedy,et al.  Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond , 2001 .

[80]  Mita,et al.  Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. , 1996, Physical review. B, Condensed matter.

[81]  D. Adams,et al.  Focused ion beam milling of diamond: Effects of H2O on yield, surface morphology and microstructure , 2003 .

[82]  Horacio Dante Espinosa,et al.  Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films , 2004 .

[83]  F. Jelezko,et al.  Quantum information processing in diamond , 2005, quant-ph/0510152.

[84]  S. C. Benjamin,et al.  Optical generation of matter qubit graph states , 2005, quant-ph/0506110.

[85]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[86]  R. Blume-Kohout,et al.  Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer , 2002, quant-ph/0204157.

[87]  Simon J. Devitt,et al.  Information free quantum bus for universal quantum computation , 2005 .

[88]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[89]  R. Shimizu,et al.  Cross‐sectional transmission electron microscopy study of isolated diamond particles grown on a mirror‐polished Si substrate , 1995 .