Domain decomposition preconditioners for multiscale problems

In this paper, we study domain decomposition preconditioners for multiscale elliptic problems in high contrast media. We construct preconditioners such that the condition number of the preconditioned system is independent of media contrast. For this purpose, multiscale spaces for the interpolation on the coarse grid is developed using a local weighted spectral problem. A main observation is that the eigenvalues of this spectral problem control the condition number. In the presence of high-contrast inclusions, there are small, asymptotically vanishing, eigenvalues, i.e., these eigenvalues decrease as we increase the contrast. We propose the coarse space that includes the eigenfunctions corresponding to these small, asymptotically vanishing, eigenvalues. We prove that domain decomposition preconditioners with this coarse space result to the convergence of the methods independent of the contrast. The coarse space constructed using the eigenfunctions of local spectral problem can be large if there are many isolated inclusions. We propose approaches to reduce the dimension of the coarse space. Numerical results are presented. We compare the proposed methods with domain decomposition methods where multiscale finite element basis or energy minimizing basis functions are used in constructing coarse spaces. We show that the number of iterations is smaller with proposed methods and they remain bounded as the contrast increases.

[1]  T. Arbogast Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow , 2002 .

[2]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..

[3]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[4]  L. Durlofsky,et al.  A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations , 2003 .

[5]  Multiscale Finite Element Methods for Elliptic Equations , 2010 .

[6]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[7]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..

[8]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  T. Hou,et al.  Multiscale Domain Decomposition Methods for Elliptic Problems with High Aspect Ratios , 2002 .

[11]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[12]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[13]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[14]  P. Jenny,et al.  Multi-Scale Finite-Volume Method for Highly Heterogeneous Porous Media with Shale Layers , 2004 .

[15]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[16]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[17]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[18]  H. Owhadi,et al.  Metric based up-scaling , 2005, math/0505223.

[19]  I. Graham,et al.  Robust domain decomposition algorithms for multiscale PDEs , 2007 .

[20]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[21]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[22]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[23]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[24]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[25]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[26]  Stein Krogstad,et al.  A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..