Dissipative soliton excitability induced by spatial inhomogeneities and drift

Disipative solitons (DS) arise in a large variety of systems from a balance between nonlinearity and spatial coupling, and driving and dissipation. In this work [1] we present a mechanism that generically induces dynamical regimes, such as oscillations and excitable behavior, in which the structure of the DS is preserved. The mechanism relies on the interplay between spatial inhomogeneities and drift, and therefore can be implemented under very general conditions.

[1]  Pere Colet,et al.  Dynamical properties of two-dimensional Kerr cavity solitons , 2002 .

[2]  M. Matias,et al.  Effects of a localized beam on the dynamics of excitable cavity solitons , 2008, 0808.2570.

[3]  Optical bullet holes , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[4]  Irving R Epstein,et al.  Localized patterns in reaction-diffusion systems. , 2007, Chaos.

[5]  Maxi San Miguel,et al.  Noise-Sustained Convective Structures in Nonlinear Optics , 1997 .

[6]  G. Izús,et al.  Noise-sustained structures in differential-flow reactors with autocatalytic kinetics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  L. Lugiato,et al.  Interaction and control of optical localized structures , 1996 .

[8]  Thorsten Ackemann,et al.  Properties of feedback solitons in a single-mirror experiment , 2003 .

[9]  C. Cossu,et al.  Global Measures of Local Convective Instabilities , 1997 .

[10]  William J. Firth,et al.  Cavity and Feedback Solitons , 2002 .

[11]  Christophe Szwaj,et al.  Experimental evidence of absolute and convective instabilities in optics. , 2004, Physical review letters.

[12]  Mustapha Tlidi,et al.  Dissipative Solitons: from Optics to Biology and Medicine , 2008 .

[13]  P. Genevet,et al.  Microresonator defects as sources of drifting cavity solitons. , 2009, Physical review letters.

[14]  Lorenzo Spinelli,et al.  SPATIAL SOLITONS IN SEMICONDUCTOR MICROCAVITIES , 1998 .

[15]  L. Lugiato,et al.  Cavity solitons as pixels in semiconductor microcavities , 2002, Nature.

[16]  P. Umbanhowar,et al.  Localized excitations in a vertically vibrated granular layer , 1996, Nature.

[17]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[18]  U. Peschel,et al.  Quadratic cavity solitons-the up-conversion case , 2003 .

[19]  E. Knobloch,et al.  Homoclinic snaking: structure and stability. , 2007, Chaos.

[20]  M. San Miguel,et al.  Walk-off and pattern selection in optical parametric oscillators. , 1998, Optics letters.

[21]  M. Taki,et al.  Transverse dynamics of optical parametric oscillators in presence of walk-off , 1998 .

[22]  39 , 2014, Fetch the Devil.

[23]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[24]  Ahlers,et al.  Noise-sustained structure in Taylor-Couette flow with through flow. , 1991, Physical review letters.

[25]  M. Matias,et al.  Excitability mediated by localized structures , 2004, EQEC '05. European Quantum Electronics Conference, 2005..

[26]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[27]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[28]  Pere Colet,et al.  Logical operations with localized structures , 2012, ArXiv.

[29]  Cavity soliton oscillations in a one-dimensional fiber resonator , 2012, IEEE Photonics Conference 2012.

[30]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[31]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[32]  M. Matias,et al.  Phase-space structure of two-dimensional excitable localized structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Andrew G. Glen,et al.  APPL , 2001 .

[34]  P. D. Woods,et al.  Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopft bifurcation , 1999 .

[35]  R. Lefever,et al.  Localized structures and localized patterns in optical bistability. , 1994, Physical review letters.

[36]  Jan Danckaert,et al.  Dynamical instabilities of dissipative solitons in nonlinear optical cavities with nonlocal materials , 2008 .

[37]  E. Louvergneaux,et al.  Corrigendum: Experimental evidence of dissipative spatial solitons in an optical passive Kerr cavity , 2011 .

[38]  All-optical delay line using semiconductor cavity solitons , 2008 .

[39]  C. Christov,et al.  Dissipative solitons , 1995 .

[40]  W. Firth,et al.  Bifurcation structure of dissipative solitons , 2007 .