A method for dynamic crack and shear band propagation with phantom nodes

A new method for modelling of arbitrary dynamic crack and shear band propagation is presented. We show that by a rearrangement of the extended finite element basis and the nodal degrees of freedom, the discontinuity can be described by superposed elements and phantom nodes. Cracks are treated by adding phantom nodes and superposing elements on the original mesh. Shear bands are treated by adding phantom degrees of freedom. The proposed method simplifies the treatment of element-by-element crack and shear band propagation in explicit methods. A quadrature method for 4-node quadrilaterals is proposed based on a single quadrature point and hourglass control. The proposed method provides consistent history variables because it does not use a subdomain integration scheme for the discontinuous integrand. Numerical examples for dynamic crack and shear band propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[2]  J. F. Kalthoff Modes of dynamic shear failure in solids , 2000 .

[3]  Surendra P. Shah,et al.  Mixed‐Mode Fracture of Concrete Subjected to Impact Loading , 1990 .

[4]  L. B. Freund,et al.  Fracture Initiation Due to Asymmetric Impact Loading of an Edge Cracked Plate , 1990 .

[5]  Alan Needleman,et al.  Finite element analyses of shear localization in rate and temperature dependent solids , 1986 .

[6]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[7]  Ted Belytschko,et al.  Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition , 2002 .

[8]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[9]  A. Rosakis,et al.  Dynamically propagating shear bands in impact-loaded prenotched plates—II. Numerical simulations , 1996 .

[10]  Ted Belytschko,et al.  A comment on the article ``A finite element method for simulation of strong and weak discontinuities in solid mechanics'' by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540] , 2006 .

[11]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[12]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[13]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[14]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[15]  P. Steinmann,et al.  A finite element method for the computational modelling of cohesive cracks , 2005 .

[16]  A. Needleman,et al.  A tangent modulus method for rate dependent solids , 1984 .

[17]  Albert S. Kobayashi,et al.  Mechanics of crack curving and branching — a dynamic fracture analysis , 1985 .

[18]  M.,et al.  DYNAMICALLY PROPAGATING SHEAR BANDS IN IMPACT-LOADED PRENOTCHED PLATES-II . NUMERICAL , 2003 .

[19]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[20]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[21]  Gross,et al.  Local crack branching as a mechanism for instability in dynamic fracture. , 1995, Physical review letters.

[22]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .

[23]  P. Perzyna Thermodynamic Theory of Viscoplasticity , 1971 .

[24]  Ivo Babuška,et al.  On principles for the selection of shape functions for the Generalized Finite Element Method , 2002 .

[25]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[26]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[27]  K. Ravi-Chandar,et al.  Dynamic Fracture of Nominally Brittle Materials , 1998 .

[28]  T. Belytschko,et al.  Suppression of spurious intermediate frequency modes in under‐integrated elements by combined stiffness/viscous stabilization , 2005 .

[29]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[30]  J. Fineberg,et al.  Microbranching instability and the dynamic fracture of brittle materials. , 1996, Physical review. B, Condensed matter.

[31]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[32]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[33]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[34]  Julien Réthoré,et al.  An energy‐conserving scheme for dynamic crack growth using the eXtended finite element method , 2005 .

[35]  J. Fineberg,et al.  Crack front waves in dynamic fracture , 2003 .

[36]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .