Federating Advanced Cyberinfrastructures with Autonomic Capabilities

Cloud computing has emerged as a dominant paradigm that has been widely adopted by enterprises. Clouds provide on-demand access to computing utilities, an abstraction of unlimited computing resources, and support for on-demand scale up, scale down and scale out. Clouds are also rapidly joining high performance computing system, clusters and grids as viable platforms for scientific exploration and discovery. Furthermore, dynamically federated Cloud-of-Clouds infrastructure can support heterogeneous and highly dynamic applications requirements by composing appropriate (public and/or private) cloud services and capabilities. As a result, providing scalable and robust mechanisms to federate distributed infrastructures and handle application workflows, that can effectively utilize them, is critical. In this chapter, we present a federation model to support the dynamic federation of resources and autonomic management mechanisms that coordinate multiple workflows to use resources based on objectives. We demonstrate the effectiveness of the proposed framework and autonomic mechanisms through the discussion of an experimental evaluation of illustrative use case application scenarios, and from these experiences, we discuss that such a federation model can support new types of application formulations.

[1]  Naveen Sharma,et al.  Towards autonomic workload provisioning for enterprise Grids and clouds , 2009, 2009 10th IEEE/ACM International Conference on Grid Computing.

[2]  Erwin Laure,et al.  Grid Deployment Experiences: Grid Interoperation , 2009, Journal of Grid Computing.

[3]  Rajkumar Buyya,et al.  Performance analysis of allocation policies for interGrid resource provisioning , 2009, Inf. Softw. Technol..

[4]  Anne E. Trefethen,et al.  The UK e-Science Core Programme and the Grid , 2002, Future Gener. Comput. Syst..

[5]  Eduardo Huedo,et al.  A recursive architecture for hierarchical grid resource management , 2009, Future Gener. Comput. Syst..

[6]  Ashok Agarwal,et al.  GridX1: A Canadian computational grid , 2007, Future Gener. Comput. Syst..

[7]  Ian T. Foster,et al.  The Anatomy of the Grid: Enabling Scalable Virtual Organizations , 2001, Int. J. High Perform. Comput. Appl..

[8]  M. Parashar,et al.  Cloud Paradigms and Practices for CDS&E , 2012 .

[9]  Shantenu Jha,et al.  Autonomic management of application workflows on hybrid computing infrastructure , 2011, Sci. Program..

[10]  Eduardo Huedo,et al.  A decentralized model for scheduling independent tasks in Federated Grids , 2009, Future Gener. Comput. Syst..

[11]  Zhen Li,et al.  A computational infrastructure for grid-based asynchronous parallel applications , 2007, HPDC '07.

[12]  Dick Epema,et al.  KOALA: a co-allocating grid scheduler , 2008 .

[13]  Muli Ben-Yehuda,et al.  The Reservoir model and architecture for open federated cloud computing , 2009, IBM J. Res. Dev..

[14]  Franck Cappello,et al.  Grid'5000: A Large Scale And Highly Reconfigurable Experimental Grid Testbed , 2006, Int. J. High Perform. Comput. Appl..

[15]  Yong Zhao,et al.  Many-task computing for grids and supercomputers , 2008, 2008 Workshop on Many-Task Computing on Grids and Supercomputers.

[16]  Rajkumar Buyya,et al.  Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters , 2009, HPDC '09.

[17]  Gabriele Garzoglio,et al.  Open Science Grid , 2011 .

[18]  Naveen Sharma,et al.  Autonomic policy adaptation using decentralized online clustering , 2010, ICAC '10.

[19]  Dennis Gannon,et al.  Cloud Programming Paradigms for Technical Computing Applications , 2012 .

[20]  Liana L. Fong,et al.  Broker Selection Strategies in Interoperable Grid Systems , 2009, 2009 International Conference on Parallel Processing.

[21]  Ewa Deelman,et al.  Experiences using cloud computing for a scientific workflow application , 2011, ScienceCloud '11.

[22]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[23]  Peter Kulchyski and , 2015 .

[24]  Liana L. Fong,et al.  Grid broker selection strategies using aggregated resource information , 2010, Future Gener. Comput. Syst..

[25]  Andreas Haas,et al.  Standardization of an API for Distributed Resource Management Systems , 2007, Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07).

[26]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[27]  Paul Graham,et al.  HPC-Europa: towards uniform access to European HPC infrastructures , 2005, The 6th IEEE/ACM International Workshop on Grid Computing, 2005..

[28]  Ian Gorton,et al.  Exploring Architecture Options for a Federated, Cloud-Based System Biology Knowledgebase , 2010, 2010 IEEE Second International Conference on Cloud Computing Technology and Science.

[29]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[30]  Borja Sotomayor,et al.  Virtual Infrastructure Management in Private and Hybrid Clouds , 2009, IEEE Internet Computing.

[31]  Eduardo Huedo,et al.  Evaluation of a Utility Computing Model Based on the Federation of Grid Infrastructures , 2007, Euro-Par.

[32]  Ivan Rodero,et al.  BPDL: A Data Model for Grid Resource Broker Capabilities , 2007 .

[33]  Alexandru Iosup,et al.  Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing , 2011, IEEE Transactions on Parallel and Distributed Systems.

[34]  Ramin Yahyapour,et al.  Using SLA for Resource Management and Scheduling-a Survey, TR-0096 , 2007 .

[35]  Nicholas Carriero,et al.  Linda in context , 1989, CACM.

[36]  Radu Prodan,et al.  Extending Grids with cloud resource management for scientific computing , 2009, 2009 10th IEEE/ACM International Conference on Grid Computing.

[37]  Liana L. Fong,et al.  Cloud federation in a layered service model , 2012, J. Comput. Syst. Sci..

[38]  Ivan Rodero,et al.  Meta-Brokering Solutions for Expanding Grid Middleware Limitations , 2008, Euro-Par Workshops.

[39]  Zhao Zhang,et al.  Towards Loo on , 2008 .

[40]  Richard Wolski,et al.  The Eucalyptus Open-Source Cloud-Computing System , 2009, 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid.

[41]  Antonio Puliafito,et al.  How to Enhance Cloud Architectures to Enable Cross-Federation , 2010, IEEE CLOUD.

[42]  W. Marsden I and J , 2012 .

[43]  Zhen Li,et al.  Grid-based asynchronous replica exchange , 2007, 2007 8th IEEE/ACM International Conference on Grid Computing.

[44]  Rajkumar Buyya,et al.  High-Performance Cloud Computing: A View of Scientific Applications , 2009, 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks.

[45]  Dietmar W. Erwin,et al.  UNICORE—a Grid computing environment , 2002, Concurr. Comput. Pract. Exp..

[46]  Ivan Rodero,et al.  The Grid Backfilling: a Multi-Site Scheduling Architecture with Data Mining Prediction Techniques , 2008 .

[47]  Liana L. Fong,et al.  Enabling Interoperability among Grid Meta-Schedulers , 2013, Journal of Grid Computing.

[48]  José A. B. Fortes,et al.  Large-Scale Cloud Computing Research: Sky Computing on FutureGrid and Grid'5000 , 2010, ERCIM News.

[49]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[50]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[51]  Robert Morris,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM 2001.

[52]  Alexandru Iosup,et al.  Inter-operating grids through delegated matchmaking , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[53]  Li Zhang,et al.  Salsa: Scalable Asynchronous Replica Exchange for Parallel Molecular Dynamics Applications , 2006, 2006 International Conference on Parallel Processing (ICPP'06).

[54]  Liana L. Fong,et al.  Enabling Interoperability among Meta-Schedulers , 2008, 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID).

[55]  Eduardo Huedo,et al.  Dynamic Provision of Computing Resources from Grid Infrastructures and Cloud Providers , 2009, 2009 Workshops at the Grid and Pervasive Computing Conference.

[56]  Achim Streit,et al.  Open Standards-Based Interoperability of Job Submission and Management Interfaces across the Grid Middleware Platforms gLite and UNICORE , 2007, Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007).

[57]  Naveen Sharma,et al.  Design and evaluation of decentralized online clustering , 2012, TAAS.

[58]  Péter Kacsuk,et al.  GMBS: A new middleware service for making grids interoperable , 2010, Future Gener. Comput. Syst..

[59]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[60]  Asit Dan,et al.  Web services agreement specification (ws-agreement) , 2004 .

[61]  Johan Tordsson,et al.  A standards-based Grid resource brokering service supporting advance reservations, coallocation, and cross-Grid interoperability , 2009 .

[62]  Ivan Rodero,et al.  Data Model for Describing Grid Resource Broker Capabilities , 2008 .

[63]  Péter Kacsuk,et al.  Grid Meta-Broker Architecture: Towards an Interoperable Grid Resource Brokering Service , 2006, Euro-Par Workshops.

[64]  Rajkumar Buyya,et al.  InterGrid: a case for internetworking islands of Grids , 2008, Concurr. Comput. Pract. Exp..

[65]  Lin Yang,et al.  Investigating the use of autonomic cloudbursts for high-throughput medical image registration , 2009, 2009 10th IEEE/ACM International Conference on Grid Computing.

[66]  Yanbin Liu,et al.  Looking for an Evolution of Grid Scheduling: Meta-Brokering , 2008 .

[67]  Martin Hofmann-Apitius,et al.  Improving e-Science with Interoperability of the e-Infrastructures EGEE and DEISA , 2008 .

[68]  Carlos R. Senna,et al.  Enabling execution of service workflows in grid/cloud hybrid systems , 2010, 2010 IEEE/IFIP Network Operations and Management Symposium Workshops.

[69]  Manish Parashar,et al.  Squid: Enabling search in DHT-based systems , 2008, J. Parallel Distributed Comput..

[70]  Ewa Deelman,et al.  The cost of doing science on the cloud: the Montage example , 2008, HiPC 2008.

[71]  Gade Krishna,et al.  A scalable peer-to-peer lookup protocol for Internet applications , 2012 .

[72]  Manish Parashar,et al.  Energy-efficient application-aware online provisioning for virtualized clouds and data centers , 2010, International Conference on Green Computing.

[73]  Jesús Labarta,et al.  How the JSDL can exploit the parallelism? , 2006, Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06).

[74]  Renato Figueiredo,et al.  Science Clouds: Early Experiences in Cloud Computing for Scientific Applications , 2008 .

[75]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .