Spatial Optimization in Land-use Allocation Problems

In densely populated areas, space for development is confined, making spatial planning essential to reconcile the interests of all stakeholders. In the process of policymaking, possible future land-use scenarios are often very valuable as a reference point, but the optimal configuration in terms of costs and effects might provide even more valuable inputs when decisions have to be taken. Tools for exploring optimal land-use configurations are therefore of great interest to policymakers. With these tools, plans can be evaluated and adjusted. Spatial optimisation is a powerful method to explore the potentials of a given area to improve the spatial coherence of land-use functions. In the Netherlands, there are many different planning issues in which multi-objective spatial optimisation can play an important role. This chapter describes two case studies that apply the genetic algorithm approach.

[1]  L. Fahrig How much habitat is enough , 2001 .

[2]  Yi-Hsin Liu,et al.  Solving multiple objective linear programs in objective space , 1990 .

[3]  P. Heuberger,et al.  Application of a genetic algorithm to minimize agricultural nitrogen deposition in nature reserves , 2006 .

[4]  Paul Schot,et al.  Multiple‐objective optimization of drinking water production strategies using a genetic algorithm , 2002 .

[5]  Susan Craw,et al.  Applying Genetic Algorithms to Multi-Objective Land Use Planning , 2000, GECCO.

[6]  J. A. van Jaarsveld,et al.  OPS: An operational atmospheric transport model for priority substances , 1993 .

[7]  Debasis Sarkar,et al.  Optimisation of fed-batch bioreactors using genetic algorithms , 2003 .

[8]  Llo,et al.  Modelling the long-term atmospheric behaviour of pollutants on various spatial scales , 1995 .

[9]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[10]  Alexey Voinov,et al.  Optimization methodology for land use patterns using spatially explicit landscape models , 2002 .

[11]  Bengt Gunnar Jonsson,et al.  Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests , 2003 .

[12]  James P. Gibbs,et al.  Demography versus habitat fragmentation as determinants of genetic variation in wild populations , 2001 .

[13]  Bakema Ah,et al.  Optimalisatie Milieurendement; methodiek en berekeningen voor optimale emissiereducties , 1997 .

[14]  Alex Hagen,et al.  Fuzzy set approach to assessing similarity of categorical maps , 2003, Int. J. Geogr. Inf. Sci..

[15]  H.J.W. Vermeulen,et al.  Effectiveness of roadside verges as dispersal corridors for small ground-dwelling animals: A simulation study , 1995 .

[16]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[17]  Wolfgang Rauch,et al.  Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems , 1999 .

[18]  Mark D. McDonnell,et al.  Mathematical Methods for Spatially Cohesive Reserve Design , 2002 .

[19]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[20]  Jeroen C. J. H. Aerts Spatial decision support for resource allocation , 2002 .

[21]  Llo,et al.  Effecten van verplaatsing van agrarische ammoniakemissies: verkenning op provinciaal niveau , 2001 .

[22]  Dirk Thierens,et al.  Using Genetic Algorithms for Solving Hard Problems in GIS , 2002, GeoInformatica.

[23]  A Hagen,et al.  Multi-method assessment of map similarity , 2002 .

[24]  R. Skeffington,et al.  Peer reviewed: the use of critical loads in environmental policy making: a critical appraisal. , 1999, Environmental science & technology.

[25]  P. Zander,et al.  Modelling multiple objectives of land use for sustainable development , 1999 .

[26]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[27]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[28]  J. Schnoor,et al.  Nitrogen fixation: Anthropogenic enhancement‐environmental response , 1995 .