Newton-SOR with Quadrature Scheme for Solving Nonlinear Fredholm Integral Equations

[2]  J. Sulaiman,et al.  PATH PLANNING SIMULATION USING HARMONIC POTENTIAL FIELDS THROUGH FOUR POINT-EDGSOR METHOD VIA 9-POINT LAPLACIAN , 2016 .

[3]  Performance of HSAGE method with seikkala derivative for 2-D fuzzy poisson equation , 2014 .

[4]  D. Baleanu,et al.  On accurate solution of the Fredholm integral equations of the second kind , 2020 .

[5]  Solving Nonlinear Integral Equations by using Adomian DecompositionMethod , 2017 .

[6]  Esmaeil Najafi,et al.  Nyström-quasilinearization method and smoothing transformation for the numerical solution of nonlinear weakly singular Fredholm integral equations , 2020, J. Comput. Appl. Math..

[7]  Mohd,et al.  Newton-EGMSOR Methods for Solution of Second Order Two-Point Nonlinear Boundary Value Problems , 2012 .

[8]  Khosrow Maleknejad,et al.  Application of Sinc-collocation method for solving a class of nonlinear Fredholm integral equations , 2011, Comput. Math. Appl..

[9]  Jin Huang,et al.  A novel approach to solve nonlinear Fredholm integral equations of the second kind , 2016, SpringerPlus.

[10]  Linda Smail,et al.  Convergence analysis of a highly accurate Nyström scheme for Fredholm integral equations , 2020, Applied Numerical Mathematics.

[11]  Akbar Hashemi Borzabadi,et al.  A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind , 2009, J. Comput. Appl. Math..

[12]  D. Young Iterative methods for solving partial difference equations of elliptic type , 1954 .

[13]  D. Maturi The Successive Approximation Method for Solving Nonlinear Fredholm Integral Equation of the Second Kind Using Maple , 2019, Advances in Pure Mathematics.

[14]  M. Suleiman,et al.  The Four Point-EDGMSOR Iterative Method for Solution of 2D Helmholtz Equations , 2011 .

[15]  Tofigh Allahviranloo,et al.  Discrete homotopy analysis method for the nonlinear Fredholm integral equations , 2011 .

[16]  M. Nadir,et al.  Adapted Newton-Kantorovich Methods for Nonlinear Integral Equations , 2016 .

[17]  Norbert K. Semmer,et al.  Taking the chance: Core self-evaluations predict relative gain in job resources following turnover , 2016, SpringerPlus.

[18]  Gnaneshwar Nelakanti,et al.  Error analysis of polynomial-based multi-projection methods for a class of nonlinear Fredholm integral equations , 2018 .

[19]  A. Hadjidimos Successive overrelaxation (SOR) and related methods , 2000 .

[21]  R. Katani Numerical solution of the Fredholm integral equations with a quadrature method , 2018, SeMA Journal.