Discrete Painlevé equations and random matrix averages

The τ-function theory of Painleve systems is used to derive recurrences in the rank n of certain random matrix averages over U(n). These recurrences involve auxiliary quantities which satisfy discrete Painleve equations. The random matrix averages include cases which can be interpreted as eigenvalue distributions at the hard edge and in the bulk of matrix ensembles with unitary symmetry. The recurrences are illustrated by computing the value of a sequence of these distributions as n varies, and demonstrating convergence to the value of the appropriate limiting distribution.

[1]  H. Spohn,et al.  Exact Scaling Functions for One-Dimensional Stationary KPZ Growth , 2002, cond-mat/0212519.

[2]  U. Grimm Level‐spacing distributions of the Gaussian unitary random matrix ensemble , 2002, cond-mat/0211279.

[3]  P. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PVI , the JUE, CyUE, cJUE and scaled limits , 2002, Nagoya Mathematical Journal.

[4]  T. Masuda Classical transcendental solutions of the Painleve equations and their degeneration , 2003, nlin/0302026.

[5]  P. Forrester,et al.  Increasing subsequences and the hard-to-soft edge transition in matrix ensembles , 2002, math-ph/0205007.

[6]  A. Borodin,et al.  Distribution of the First Particle in Discrete Orthogonal Polynomial Ensembles , 2002, math-ph/0204001.

[7]  J. P. Garrahan,et al.  Simple strong glass forming models: mean-field solution with activation , 2002, cond-mat/0209362.

[8]  A. Borodin Isomonodromy transformations of linear systems of difference equations , 2002, math/0209144.

[9]  J. Baik Painlevé expressions for LOE, LSE, and interpolating ensembles , 2002, nlin/0205010.

[10]  P. Forrester,et al.  τ-function evaluation of gap probabilities in orthogonal and symplectic matrix ensembles , 2002, math-ph/0203049.

[11]  P. Moerbeke,et al.  Recursion Relations for Unitary Integrals, Combinatorics and the Toeplitz Lattice , 2002, math-ph/0201063.

[12]  P. Forrester Ja n 20 02 Application of the τ-function theory of Painlevé equations to random matrices : , 2022 .

[13]  A. Borodin Discrete gap probabilities and discrete Painlevé equations , 2001, math-ph/0111008.

[14]  J. Baik Riemann-Hilbert problems for last passage percolation , 2001, math/0107079.

[15]  H. Sakai,et al.  Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations , 2001 .

[16]  P. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[17]  G. Olshanski,et al.  Infinite Random Matrices and Ergodic Measures , 2000, math-ph/0010015.

[18]  P. Forrester,et al.  Gap probabilities in the finite and scaled Cauchy random matrix ensembles , 2000, math-ph/0009022.

[19]  P. Forrester,et al.  Exact Wigner Surmise Type Evaluation of the Spacing Distribution in the Bulk of the Scaled Random Matrix Ensembles , 2000, math-ph/0009023.

[20]  A. Borodin Riemann-Hilbert problem and the discrete Bessel Kernel , 1999, math/9912093.

[21]  Y. Ohta,et al.  Determinant Formulas for the Toda and Discrete Toda Equations , 1999, solv-int/9908007.

[22]  M. Noumi,et al.  Symmetries in the fourth Painlevé equation and Okamoto polynomials , 1997, Nagoya Mathematical Journal.

[23]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[24]  Humihiko Watanabe Defining variety and birational canonical transformations of the fifth Painleve equation , 1998 .

[25]  P. Moerbeke,et al.  Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.

[26]  Peter J. Forrester,et al.  Complex Wishart matrices and conductance in mesoscopic systems: Exact results , 1994 .

[27]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[28]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[29]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[30]  Kazuo Okamoto Studies on the Painleve equations II , 1987 .

[31]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[32]  Kazuo Okamoto,et al.  Studies on the Painlev equations: III. Second and fourth painlev equations,P II andP IV , 1986 .

[33]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .