Thermal conduction of carbon nanotubes using molecular dynamics

The heat flux autocorrelation functions of carbon nanotubes (CNTs) with different radius and lengths is calculated using equilibrium molecular dynamics. The thermal conductance of CNTs is also calculated using the Green-Kubo relation from the linear response theory. By pointing out the ambiguity in the cross section definition of single wall CNTs, we use the thermal conductance instead of conductivity in calculations and discussions. We find that the thermal conductance of CNTs diverges with the CNT length. After the analysis of vibrational density of states, it can be concluded that more low frequency vibration modes exist in longer CNTs, and they effectively contribute to the divergence of thermal conductance.

[1]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[2]  Jian-Sheng Wang,et al.  Intriguing heat conduction of a chain with transverse motions. , 2004, Physical review letters.

[3]  William A. Goddard,et al.  Thermal conductivity of diamond and related materials from molecular dynamics simulations , 2000 .

[4]  David G. Pettifor,et al.  ANALYTIC BOND-ORDER POTENTIALS BEYOND TERSOFF-BRENNER. II. APPLICATION TO THE HYDROCARBONS , 1999 .

[5]  LETTER TO THE EDITOR: Persistence of vibrational modes in a classical two-dimensional electron liquid , 2000, cond-mat/0001026.

[6]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[7]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[8]  Bambi Hu,et al.  Finite thermal conductivity in 1D models having zero Lyapunov exponents. , 2002, Physical review letters.

[9]  K. Sugiyama,et al.  Production of YbH + by chemical reaction of Yb + in excited states with H 2 gas , 1997 .

[10]  Jingqi Li,et al.  Thermal conductivity of multiwalled carbon nanotubes , 2002 .

[11]  Alan J. H. McGaughey,et al.  Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation , 2004 .

[12]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[13]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[14]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[15]  Baowen Li,et al.  Anomalous heat conduction and anomalous diffusion in one-dimensional systems. , 2003, Physical review letters.

[16]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[17]  Changchun Zhu,et al.  Mechanical properties of carbon nanotube by molecular dynamics simulation , 2001 .

[18]  One-dimensional heat conductivity exponent from a random collision model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[20]  Ladd,et al.  Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. , 1986, Physical review. B, Condensed matter.

[21]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[22]  Gui-Rong Liu,et al.  Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method , 2004, Comput. Phys. Commun..

[23]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[24]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[25]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[26]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[27]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[28]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[29]  C. Herring Role of Low-Energy Phonons in Thermal Conduction , 1954 .

[30]  Sebastian Volz,et al.  Molecular-dynamics simulation of thermal conductivity of silicon crystals , 2000 .

[31]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[32]  John W. Mintmire,et al.  Electronic and structural properties of carbon nanotubes , 1995 .

[33]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[34]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[35]  Shigeo Maruyama,et al.  A molecular dynamics simulation of heat conduction in finite length SWNTs , 2002 .

[36]  Mode-coupling theory and molecular dynamics simulation for heat conduction in a chain with transverse motions. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.