ActiveMath - generation and reuse of interactive exercises using domain reasoners and automated tutorial strategies

In this thesis we present an approach to interactive exercises for mathematical domains. We have defined a generic knowledge representation for multi-step interactive exercises and developed the exercise sub-system within the ActiveMath learning environment. In order to achieve deep domain diagnosis and automated feedback generation in multiple mathematical domains, a distributed semantic evaluation service architecture was developed. This architecture allows to remotely query multiple domain reasoning services using a domain-independent query format. In our approach, we allow for hand-crafted exercises for which we provide authoring tools, as well as fully or partially automatically generated exercises. We have also built an extensible framework for tutorial and presentation strategies, which allows for reusing the same exercise with different strategies.

[1]  Jean Underwood,et al.  REDEEM: simple intelligent tutoring systems from usable tools , 2003 .

[2]  Erica Melis,et al.  Learning from Erroneous Examples , 2010, Intelligent Tutoring Systems.

[3]  Paul Libbrecht,et al.  Using Computer Algebra Systems as Cognitive Tools , 2002, Intelligent Tutoring Systems.

[4]  Joseph Fong,et al.  Advances in Web-Based Learning , 2002, Lecture Notes in Computer Science.

[5]  Paul Libbrecht,et al.  Knowledge Representation and Management in ACTIVEMATH , 2004, Annals of Mathematics and Artificial Intelligence.

[6]  Erica Melis,et al.  Combining Evaluative and Generative Diagnosis in ACTIVEMATH , 2009, AIED.

[7]  John Seely Brown,et al.  Diagnostic Models for Procedural Bugs in Basic Mathematical Skills , 1978, Cogn. Sci..

[8]  Kurt VanLehn,et al.  The Andes Physics Tutoring System: Lessons Learned , 2005, Int. J. Artif. Intell. Educ..

[9]  Antonija Mitrovic,et al.  A Critique of Kodaganallur, Weitz and Rosenthal, "A Comparison of Model-Tracing and Constraint-Based Intelligent Tutoring Paradigms" , 2006, Int. J. Artif. Intell. Educ..

[10]  Antonija Mitrovic,et al.  CAPIT: an intelligent tutoring system for capitalisation and punctuation , 2000, Proceedings International Workshop on Advanced Learning Technologies. IWALT 2000. Advanced Learning Technology: Design and Development Issues.

[11]  Antonija Mitrovic,et al.  A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modeling , 2003, User Modeling.

[12]  E. Melis,et al.  Integration of Mathematical Systems into the ActiveMath Learning Environment , 2001 .

[13]  Jean-François Nicaud,et al.  A computer program for the learning of algebra: description and first experiment , 2002 .

[14]  Cristina Conati,et al.  Toward Computer-Based Support of Meta-Cognitive Skills: a Computational Framework to Coach Self-Explanation , 2000 .

[15]  Giorgi Goguadze,et al.  Authoring Interactive Exercises in ActiveMath , 2007 .

[16]  Manolis Mavrikis,et al.  Interoperability issues between markup formats for mathematical exercises , 2006 .

[17]  K. Koedinger,et al.  Example-Tracing Tutors : A New Paradigm for Intelligent Tutoring Systems , 2008 .

[18]  Erica Melis,et al.  Learning from Erroneous Examples: When and How Do Students Benefit from Them? , 2010, EC-TEL.

[19]  José-Luis Pérez-de-la-Cruz,et al.  Bayesian networks for student model engineering , 2010, Comput. Educ..

[20]  Paul Libbrecht,et al.  A flexible and efficient presentation-architecture for adaptive hypermedia: description and technical evaluation , 2004, IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings..

[21]  Susanne Narciss,et al.  Fostering achievement and motivation with bug-related tutoring feedback in a computer-based training for written subtraction. , 2006 .

[22]  Susanne Narciss,et al.  How to design informative tutoring feedback for multi-media learning , 2004 .

[23]  Antonija Mitrovic,et al.  Evaluation of a Constraint-Based Tutor for a Database Language , 1999 .

[24]  Erica Melis,et al.  Interactivity of Exercises in ActiveMath , 2005, ICCE.

[25]  Erica Melis,et al.  Pedagogically founded courseware generation based on HTN-planning , 2009, Expert Syst. Appl..

[26]  D. Krathwohl A Taxonomy for Learning, Teaching and Assessing: , 2008 .

[27]  Debra Hoven Instructional Design for Multimedia: Towards a Learner-Centred CELL (Computer-Enhanced Language Learning) Model , 1997 .

[28]  E. Melis,et al.  ActiveMath : System Description , 2001 .

[29]  Paul Libbrecht,et al.  ActiveMath: A Generic and Adaptive Web-Based Learning Environment , 2001 .

[30]  Paul Libbrecht,et al.  Semantics for Web-Based Mathematical Education Systems , 2002, Semantic Web Workshop.

[31]  Volker Sorge,et al.  Adaptive Course Generation and Presentation , 2000 .

[32]  K. VanLehn,et al.  Teaching Meta-cognitive Skills: Implementation and Evaluation of a Tutoring System to Guide Self- Explanation While Learning from Examples , 1999 .

[33]  Erica Melis,et al.  How ActiveMath Supports Moderate Constructivist Mathematics Teaching , 2007 .

[34]  Susan E. Newman,et al.  Cognitive Apprenticeship: Teaching the Craft of Reading, Writing, and Mathematics. Technical Report No. 403. , 1987 .

[35]  Susanne Narciss,et al.  Interoperable Competencies Characterizing Learning Objects in Mathematics , 2008, Intelligent Tutoring Systems.

[36]  Manolis Mavrikis,et al.  WaLLiS: a Web-based ILE for Science and Engineering Students Studying Mathematics , 2003 .

[37]  Kurt VanLehn,et al.  Interactive Conceptual Tutoring in Atlas-Andes , 2002 .

[38]  Neil T. Heffernan,et al.  Opening the Door to Non-programmers: Authoring Intelligent Tutor Behavior by Demonstration , 2004, Intelligent Tutoring Systems.

[39]  Albert T. Corbett,et al.  Intelligent Tutoring Systems , 1985, Science.

[40]  Erica Melis,et al.  Erroneous Examples: A Preliminary Investigation into Learning Benefits , 2009, EC-TEL.

[41]  David Rosenthal,et al.  An Assessment of Constraint-Based Tutors: A Response to Mitrovic and Ohlsson's Critique of "A Comparison of Model-Tracing and Constraint-Based Intelligent Tutoring Paradigms" , 2006, Int. J. Artif. Intell. Educ..

[42]  Angélica de Antonio Jiménez,et al.  Steve Meets Jack: The Integration of an Intelligent Tutor and a Virtual Environment with Planning Capabilities , 2003, IVA.

[43]  Susanne Narciss,et al.  Analyzing Computer-Based Fraction Tasks on the Basis of a Two-Dimensional View of Mathematics Competences , 2008 .

[44]  W. Lewis Johnson,et al.  Animated Agents for Procedural Training in Virtual Reality: Perception, Cognition, and Motor Control , 1999, Appl. Artif. Intell..

[45]  Arthur C. Graesser,et al.  Artificial Intelligence in Education - Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, Volume 200 Frontiers in Artificial Intelligence and Applications , 2009 .

[46]  Erica Melis,et al.  Towards Adaptive Generation of Faded Examples , 2004, Intelligent Tutoring Systems.

[47]  Neil T. Heffernan,et al.  The Assistment Builder: A Rapid Development Tool for ITS , 2005, AIED.

[48]  Paul Libbrecht,et al.  Semantic-aware components and services of ActiveMath , 2006, Br. J. Educ. Technol..

[49]  Erica Melis,et al.  One Exercise - Various Tutorial Strategies , 2008, Intelligent Tutoring Systems.

[50]  Kinshuk,et al.  Cognition and Exploratory Learning in Digital Age, CELDA 2005, 14-16 December 2005, Porto, Portugal, Proceedings , 2005, CELDA.

[51]  Cristina Conati,et al.  Procedural Help in Andes: Generating Hints Using a Bayesian Network Student Model , 1998, AAAI/IAAI.

[52]  Paul A. Cairns,et al.  Problems and Solutions for Markup for Mathematical Examples and Exercises , 2003, MKM.

[53]  Sylvia Stuurman,et al.  Feedback Services for Exercise Assistants , 2008 .

[54]  Paul Libbrecht,et al.  Wissensmodellierung und -nutzung in ActiveMath , 2003, Künstliche Intell..

[55]  John R. Anderson,et al.  The Geometry Tutor , 1985, IJCAI.

[56]  Manolis Mavrikis,et al.  Mathematical, Interactive Exercise Generation from Static Documents , 2004, Electron. Notes Theor. Comput. Sci..

[57]  Kenneth R. Koedinger,et al.  Applying Programming by Demonstration in an Intelligent Authoring Tool for Cognitive Tutors , 2005 .

[58]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .

[59]  Neil T. Heffernan,et al.  Expanding the Model-Tracing Architecture: A 3rd Generation Intelligent Tutor for Algebra Symbolization , 2008, Int. J. Artif. Intell. Educ..

[60]  Antonija Mitrovic,et al.  Authoring Constraint-based Tutors in ASPIRE: a Case Study of a Capital Investment Tutor , 2008 .

[61]  John R. Anderson,et al.  Knowledge tracing: Modeling the acquisition of procedural knowledge , 2005, User Modeling and User-Adapted Interaction.

[62]  Vincent Aleven,et al.  The Help Tutor: Does Metacognitive Feedback Improve Students' Help-Seeking Actions, Skills and Learning? , 2006, Intelligent Tutoring Systems.

[63]  Erica Melis,et al.  An Efficient Student Model Based on Student Performance and Metadata , 2008, ECAI.

[64]  Vincent Aleven,et al.  The Cognitive Tutor Authoring Tools (CTAT): Preliminary Evaluation of Efficiency Gains , 2006, Intelligent Tutoring Systems.

[65]  Antonija Mitrovic,et al.  A Constraint-Based Tutor for Learning Object-Oriented Analysis and Design using UML , 2005, ICCE.