Ramp compression of tantalum to multiterapascal pressures: Constraints of the thermal equation of state to 2.3 TPa and 5000 K

[1]  Raymond F. Smith,et al.  Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions , 2022, Journal of Applied Physics.

[2]  L. Dubrovinsky,et al.  Materials synthesis at terapascal static pressures , 2022, Nature.

[3]  Jesse S. Smith,et al.  Strength of tantalum to 276 GPa determined by two x-ray diffraction techniques using diamond anvil cells , 2022, Journal of Applied Physics.

[4]  J. Eggert,et al.  Establishing gold and platinum standards to 1 terapascal using shockless compression , 2021, Science.

[5]  Phanish Suryanarayana,et al.  Development of a Multiphase Beryllium Equation of State and Physics-based Variations. , 2021, The journal of physical chemistry. A.

[6]  J. Davis,et al.  Multi-megabar Dynamic Strength Measurements of Ta, Au, Pt, and Ir , 2020, Journal of Dynamic Behavior of Materials.

[7]  S. Anzellini,et al.  A Practical Review of the Laser-Heated Diamond Anvil Cell for University Laboratories and Synchrotron Applications , 2020 .

[8]  Jesse S. Smith,et al.  Ultrahigh pressure equation of state of tantalum to 310 GPa , 2019, High Pressure Research.

[9]  Raymond F. Smith,et al.  Ultra-High Pressure Dynamic Compression of Geological Materials , 2019, Front. Earth Sci..

[10]  D. Fratanduono,et al.  Non-iterative characteristics analysis for high-pressure ramp loading. , 2018, The Review of scientific instruments.

[11]  Jon H. Eggert,et al.  Equation of state of iron under core conditions of large rocky exoplanets , 2018 .

[12]  Gilbert W. Collins,et al.  Ramp compression of tantalum to 330 GPa , 2015 .

[13]  R. Lemke,et al.  Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum , 2014 .

[14]  N. Barton,et al.  A multiscale strength model for tantalum over an extended range of strain rates , 2013 .

[15]  G. Morard,et al.  Melting of Iron at Earth’s Inner Core Boundary Based on Fast X-ray Diffraction , 2013, Science.

[16]  J. Fortney,et al.  New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data , 2012, 1207.2309.

[17]  M. Matsui High temperature and high pressure equation of state of gold , 2010 .

[18]  S. Ono First-Principles Molecular Dynamics Calculations of the Equation of State for Tantalum , 2009, International journal of molecular sciences.

[19]  F. Jing,et al.  Thermal equation of state, and melting and thermoelastic properties of bcc tantalum from molecular dynamics , 2008 .

[20]  M. Gillan,et al.  Ab-initio melting curve and principal Hugoniot of tantalum , 2008 .

[21]  G. Ravichandran,et al.  Thermomechanical characterization of pure polycrystalline tantalum , 2007 .

[22]  W. Nellis,et al.  High-pressure equations of state of Al, Cu, Ta, and W , 2005 .

[23]  Sonnad,et al.  Purgatorio—a new implementation of the Inferno algorithm , 2005 .

[24]  David K. Bradley,et al.  Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility , 2004 .

[25]  Russell J. Hemley,et al.  Synthesis and characterization of a binary noble metal nitride , 2004, Nature materials.

[26]  R. Ahuja,et al.  Reduction of shock-wave data with mean-field potential approach , 2002 .

[27]  J. Köhler,et al.  Pressure–volume relationship of Ta , 2002 .

[28]  G. R. Gathers,et al.  The equation of state of platinum to 660 GPa (6. 6 Mbar) , 1989 .

[29]  Joshua R. Smith,et al.  Universal features of the equation of state of solids , 1989 .

[30]  Raymond Jeanloz,et al.  The equation of state of the gold calibration standard , 1984 .

[31]  W. Nellis,et al.  Shock compression of aluminum, copper, and tantalum , 1981 .

[32]  E. Fisher,et al.  Pressure derivatives of the elastic moduli of niobium and tantalum , 1976 .

[33]  F. Birch The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain , 1938 .

[34]  Mebarek Alouani,et al.  Full-Potential Electronic Structure Method , 2010 .

[35]  Dean L. Preston,et al.  Model of plastic deformation for extreme loading conditions , 2003 .

[36]  W. Nellis,et al.  Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80–440 GPa (0.8–4.4 Mbar) , 2003 .

[37]  C. Greeff,et al.  New Sesame equation of state for tantalum , 2000 .

[38]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[39]  Richard Fowles,et al.  Plane Stress Wave Propagation in Solids , 1970 .