Codeword Stabilized Quantum Codes

We present a unifying approach to quantum error correcting code design that encompasses additive (stabilizer) codes, as well as all known examples of nonadditive codes with good parameters. We use this framework to generate new codes with superior parameters to any previously known. In particular, we find ((10,18,3)) and ((10,20,3)) codes. We also show how to construct encoding circuits for all codes within our framework.

[1]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[2]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[3]  Chaoping Xing,et al.  A new construction of quantum error-correcting codes , 2007 .

[4]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[6]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[7]  Eric M. Rains Quantum shadow enumerators , 1999, IEEE Trans. Inf. Theory.

[8]  R. Feynman Simulating physics with computers , 1999 .

[9]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[10]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[11]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[12]  Markus Grassl,et al.  A Note on Non-Additive Quantum Codes , 1997 .

[13]  Robert RAUßENDORF MEASUREMENT-BASED QUANTUM COMPUTATION WITH CLUSTER STATES , 2009 .

[14]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[15]  Andreas Klappenecker,et al.  Graphs, quadratic forms, and quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[16]  Qing Chen,et al.  Graphical Quantum Error-Correcting Codes , 2007, 0709.1780.

[17]  Vikraman Arvind,et al.  Non-stabilizer quantum codes from Abelian subgroups of the error group , 2002, Quantum Inf. Comput..

[18]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[19]  M. Ruskai,et al.  Permutationally invariant codes for quantum error correction , 2003, quant-ph/0304153.

[20]  S. Wehner,et al.  Simple family of nonadditive quantum codes. , 2007, Physical review letters.

[21]  Eric M. Rains Quantum Codes of Minimum Distance Two , 1999, IEEE Trans. Inf. Theory.

[22]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[23]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[24]  Andrew W. Cross,et al.  Codeword stabilized quantum codes: Algorithm and structure , 2008, 0803.3232.

[25]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[26]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[27]  A. Robert Calderbank,et al.  Boolean Functions, Projection Operators, and Quantum Error Correcting Codes , 2006, IEEE Transactions on Information Theory.

[28]  C. H. Oh,et al.  Nonadditive quantum error-correcting code. , 2007, Physical review letters.

[29]  R. H. Hardin,et al.  A nonadditive quantum code , 1997, quant-ph/9703002.

[30]  Andrew W. Cross,et al.  Codeword stabilized quantum codes , 2008, 2008 IEEE International Symposium on Information Theory.