Permissive role of sphingosine on calcium-dependent endocytosis in chromaffin cells

[1]  Chia-Hsueh Lee,et al.  Dynasore inhibits rapid endocytosis in bovine chromaffin cells. , 2009, American journal of physiology. Cell physiology.

[2]  P. Yao,et al.  Clathrin-mediated endocytosis and Alzheimer's disease: An update , 2009, Ageing Research Reviews.

[3]  M. Kreft,et al.  Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis , 2009, Neuron.

[4]  L. Gandía,et al.  Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells , 2008, Acta physiologica.

[5]  L. Gandía,et al.  A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla , 2007, Acta physiologica.

[6]  Antonio G. García,et al.  L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells. , 2007, Biochemical and biophysical research communications.

[7]  Huan Yu,et al.  Involvement of Sphingosine-1-Phosphate in Glutamate Secretion in Hippocampal Neurons , 2007, Molecular and Cellular Biology.

[8]  J. García-Sancho,et al.  Calcium signaling and exocytosis in adrenal chromaffin cells. , 2006, Physiological reviews.

[9]  S. Jung,et al.  Dopamine release in PC12 cells is mediated by Ca2+‐dependent production of ceramide via sphingomyelin pathway , 2005, Journal of neurochemistry.

[10]  M. Villarroya,et al.  Mitochondrial calcium sequestration and protein kinase C cooperate in the regulation of cortical F‐actin disassembly and secretion in bovine chromaffin cells , 2004, The Journal of physiology.

[11]  Usha Acharya,et al.  Ceramidase Regulates Synaptic Vesicle Exocytosis and Trafficking , 2004, The Journal of Neuroscience.

[12]  R. Burgoyne Fast exocytosis and endocytosis triggered by depolarisation in single adrenal chromaffin cells before rapid Ca2+ current run-down , 1995, Pflügers Archiv.

[13]  Manfred Lindau,et al.  Patch-clamp techniques for time-resolved capacitance measurements in single cells , 1988, Pflügers Archiv.

[14]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[15]  A. Ogura,et al.  Nerve Growth Factor-induced Glutamate Release Is via p75 Receptor, Ceramide, and Ca2+ from Ryanodine Receptor in Developing Cerebellar Neurons* , 2003, Journal of Biological Chemistry.

[16]  R. Chow,et al.  Calcium dependence of action potential-induced endocytosis in chromaffin cells , 2003, Pflügers Archiv.

[17]  R. Cooper,et al.  Sphingosine 1‐phosphate enhances spontaneous transmitter release at the frog neuromuscular junction , 2002, British journal of pharmacology.

[18]  H. Palfrey,et al.  Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Linke,et al.  Overexpression of Acid Ceramidase Protects from Tumor Necrosis Factor–Induced Cell Death , 2000, The Journal of experimental medicine.

[20]  J. García-Sancho,et al.  Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion , 2000, Nature Cell Biology.

[21]  P. Nucifora,et al.  Tyrosine Phosphorylation Regulates Rapid Endocytosis in Adrenal Chromaffin Cells , 1999, The Journal of Neuroscience.

[22]  E. Stuenkel,et al.  Mitochondria Regulate the Ca2+–Exocytosis Relationship of Bovine Adrenal Chromaffin Cells , 1999, The Journal of Neuroscience.

[23]  E. Stuenkel,et al.  Mitochondria regulate the Ca(2+)-exocytosis relationship of bovine adrenal chromaffin cells. , 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  G. Wang,et al.  Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. , 1998, Biochemistry.

[25]  E. Neher Vesicle Pools and Ca2+ Microdomains: New Tools for Understanding Their Roles in Neurotransmitter Release , 1998, Neuron.

[26]  F. Maxfield,et al.  Sphingomyelinase Treatment Induces ATP-independent Endocytosis , 1998, The Journal of cell biology.

[27]  E. Neher,et al.  Multiple Forms of Endocytosis In Bovine Adrenal Chromaffin Cells , 1997, The Journal of cell biology.

[28]  W. Betz,et al.  Nerve Activity but Not Intracellular Calcium Determines the Time Course of Endocytosis at the Frog Neuromuscular Junction , 1996, Neuron.

[29]  C. Sirrenberg,et al.  Neurotrophins Stimulate the Release of Dopamine from Rat Mesencephalic Neurons via Trk and p75Lntr Receptors* , 1996, The Journal of Biological Chemistry.

[30]  W. Almers,et al.  Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells , 1996, Current Opinion in Neurobiology.

[31]  H. Palfrey,et al.  Calmodulin Is the Divalent Cation Receptor for Rapid Endocytosis, but Not Exocytosis, in Adrenal Chromaffin Cells , 1996, Neuron.

[32]  M. McNiven,et al.  Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Gill,et al.  Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. , 1994, The Journal of biological chemistry.

[34]  Gary Matthews,et al.  Inhibition of endocytosis by elevated internal calcium in a synaptic terminal , 1994, Nature.

[35]  R. Zucker,et al.  Multiple calcium-dependent processes related to secretion in bovine chromaffin cells , 1993, Neuron.

[36]  M. Mattson,et al.  beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Kim Cooper,et al.  Low access resistance perforated patch recordings using amphotericin B , 1991, Journal of Neuroscience Methods.

[38]  D. Gill,et al.  Intracellular calcium release mediated by sphingosine derivatives generated in cells. , 1990, Science.

[39]  M. A. Moro,et al.  Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. , 1990, Analytical biochemistry.

[40]  B. Livett Adrenal medullary chromaffin cells in vitro. , 1984, Physiological reviews.

[41]  E Neher,et al.  Sodium and calcium channels in bovine chromaffin cells , 1982, The Journal of physiology.

[42]  A. Mazur,et al.  Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction , 1980, The Journal of cell biology.

[43]  J. de Champlain,et al.  Circulating Catecholamine Levels in Human and Experimental Hypertension , 1976, Circulation research.

[44]  B. Katz,et al.  Spontaneous and evoked activity of motor nerve endings in calcium Ringer , 1969, The Journal of physiology.

[45]  W. Douglas,et al.  Stimulus‐secretion coupling: the concept and clues from chromaffin and other cells , 1968, British journal of pharmacology.