NMR solution structure of an oxaliplatin 1,2-d(GG) intrastrand cross-link in a DNA dodecamer duplex.

[1]  R. Ozols,et al.  Mechanisms of drug resistance in ovarian cancer , 2010, Cancer.

[2]  W. Olson,et al.  3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. , 2003, Nucleic acids research.

[3]  D. Crothers,et al.  Comparison of Analyses of DNA Curvature , 2003, Journal of biomolecular structure & dynamics.

[4]  D. Ramsden,et al.  Translesion synthesis past platinum DNA adducts by human DNA polymerase mu. , 2003, Biochemistry.

[5]  Xiaohui Cui,et al.  Random coil proton chemical shifts of deoxyribonucleic acids , 2002, Journal of biomolecular NMR.

[6]  M. Marinus,et al.  MutS Preferentially Recognizes Cisplatin- over Oxaliplatin-modified DNA* , 2002, The Journal of Biological Chemistry.

[7]  J. Kozelka,et al.  Unrestrained 5 ns molecular dynamics simulation of a cisplatin-DNA 1,2-GG adduct provides a rationale for the NMR features and reveals increased conformational flexibility at the platinum binding site. , 2001, Journal of molecular biology.

[8]  Adam P. Silverman,et al.  Effects of Spectator Ligands on the Specific Recognition of Intrastrand Platinum-DNA Cross-links by High Mobility Group Box and TATA-binding Proteins* 210 , 2001, The Journal of Biological Chemistry.

[9]  S. Lippard,et al.  2.4 A crystal structure of an oxaliplatin 1,2-d(GpG) intrastrand cross-link in a DNA dodecamer duplex. , 2001, Inorganic chemistry.

[10]  J. Essigmann,et al.  Mechanisms of resistance to cisplatin. , 2001, Mutation research.

[11]  G M Clore,et al.  Improving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base-base positional interactions. , 2001, Journal of the American Chemical Society.

[12]  R. Isaacs,et al.  Relationship of DNA structure to internal dynamics: correlation of helical parameters from NOE-based NMR solution structures of d(GCGTACGC)(2) and d(CGCTAGCG)(2) with (13)C order parameters implies conformational coupling in dinucleotide units. , 2001, Journal of molecular biology.

[13]  L. Marzilli,et al.  Relationship of solution and protein-bound structures of DNA duplexes with the major intrastrand cross-link lesions formed on cisplatin binding to DNA. , 2001, Journal of the American Chemical Society.

[14]  Wei Yang,et al.  Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA , 2000, Nature.

[15]  Anastassis Perrakis,et al.  The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch , 2000, Nature.

[16]  W. Olson,et al.  A-form conformational motifs in ligand-bound DNA structures. , 2000, Journal of molecular biology.

[17]  D. Turner,et al.  Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2). , 2000, Biochemistry.

[18]  S. Chaney,et al.  The Efficiency and Fidelity of Translesion Synthesis past Cisplatin and Oxaliplatin GpG Adducts by Human DNA Polymerase β* , 2000, The Journal of Biological Chemistry.

[19]  F. Hanaoka,et al.  Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. , 2000, Biochemistry.

[20]  S. Lippard,et al.  DNA sequence context modulates the impact of a cisplatin 1,2-d(GpG) intrastrand cross-link on the conformational and thermodynamic properties of duplex DNA. , 2000, Journal of molecular biology.

[21]  A. Travers,et al.  Recognition of distorted DNA structures by HMG domains. , 2000, Current opinion in structural biology.

[22]  S. Chaney,et al.  Specificity of platinum-DNA adduct repair. , 1999, Journal of inorganic biochemistry.

[23]  Eric D. Scheeff,et al.  Molecular modeling of the intrastrand guanine-guanine DNA adducts produced by cisplatin and oxaliplatin. , 1999, Molecular pharmacology.

[24]  J. Turchi,et al.  Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts. , 1999, Biochemistry.

[25]  C. Pabo,et al.  Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins , 1999, Nature.

[26]  J. Wang,et al.  Induction of JNK and c-Abl signalling by cisplatin and oxaliplatin in mismatch repair-proficient and -deficient cells , 1999, British Journal of Cancer.

[27]  J. Essigmann,et al.  Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. , 1998, Biochemistry.

[28]  J. Ferretti,et al.  15N-edited three-dimensional NOESY-HMQC with water flipback: enhancement of weak labile 1H resonances of protein side chains contacting DNA. , 1998, Journal of magnetic resonance.

[29]  C. Napier,et al.  Sequence- and region-specificity of oxaliplatin adducts in naked and cellular DNA. , 1998, Molecular pharmacology.

[30]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[31]  T. Kunkel,et al.  The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. , 1998, Cancer research.

[32]  S. Lippard,et al.  NMR solution structure of a DNA dodecamer duplex containing a cis-diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. , 1998, Biochemistry.

[33]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[34]  S. Aebi,et al.  Differential induction of c-Jun NH2-terminal kinase and c-Abl kinase in DNA mismatch repair-proficient and -deficient cells exposed to cisplatin. , 1997, Cancer research.

[35]  J. Hoffmann,et al.  HMG1 protein inhibits the translesion synthesis of the major DNA cisplatin adduct by cell extracts. , 1997, Journal of molecular biology.

[36]  C. Macleod,et al.  In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. , 1997, Cancer research.

[37]  K. Paull,et al.  Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute's Anticancer Drug Screen panel. , 1996, Biochemical pharmacology.

[38]  S. Lippard,et al.  Crystal Structure of the Anticancer Drug Cisplatin Bound to Duplex DNA , 1996 .

[39]  S. Aebi,et al.  The role of DNA mismatch repair in platinum drug resistance. , 1996, Cancer research.

[40]  W. Denny,et al.  Mutagenic and carcinogenic properties of platinum-based anticancer drugs. , 1996, Mutation research.

[41]  P. Modrich,et al.  Cisplatin and Adriamycin Resistance Are Associated with MutLα and Mismatch Repair Deficiency in an Ovarian Tumor Cell Line* , 1996, The Journal of Biological Chemistry.

[42]  C. Boland,et al.  Loss of DNA mismatch repair in acquired resistance to cisplatin. , 1996, Cancer research.

[43]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[44]  S. Lippard,et al.  The HMG-domain protein Ixr1 blocks excision repair of cisplatin-DNA adducts in yeast. , 1996, Mutation research.

[45]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[46]  A. Wang,et al.  Structure and isomerization of an intrastrand cisplatin-cross-linked octamer DNA duplex by NMR analysis. , 1995, Biochemistry.

[47]  S. Lippard,et al.  HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. J. Pillaire,et al.  Mutagenesis in monkey cells of a vector containing a single d(GPG) cis- diamminedichloroplatinum(II) adduct placed on codon 13 of the human H- ras proto-oncogene , 1994, Nucleic Acids Res..

[49]  W. Kaufmann,et al.  Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. , 1994, Cancer research.

[50]  D. K. Treiber,et al.  Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Greene,et al.  Is cisplatin a human carcinogen? , 1992, Journal of the National Cancer Institute.

[52]  W. Kaufmann,et al.  Role of DNA replication in carrier-ligand-specific resistance to platinum compounds in L1210 cells. , 1991, Carcinogenesis.

[53]  E. Guittet,et al.  A d(GpG)-platinated decanucleotide duplex is kinked. An extended NMR and molecular mechanics study. , 1990, European journal of biochemistry.

[54]  S. Chaney,et al.  Effect of the diaminocyclohexane carrier ligand on platinum adduct formation, repair, and lethality. , 1990, Biochemistry.

[55]  B. Glickman,et al.  Sequence specificity of mutation induced by the anti-tumor drug cisplatin in the CHO aprt gene. , 1989, Carcinogenesis.

[56]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[57]  A. Bax,et al.  Assignment of the 31P and 1H resonances in oligonucleotides by two‐dimensional NMR spectroscopy , 1986, FEBS letters.

[58]  A. Eastman Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. , 1986, Biochemistry.

[59]  J. Miller,et al.  Mutagenicity, tumorigenicity, and electrophilic reactivity of the stereoisomeric platinum(II) complexes of 1,2-diaminocyclohexane. , 1981, Cancer research.

[60]  P. Calvert NMR of macromolecules , 1977, Nature.

[61]  B. Glickman,et al.  Mutations recovered in the Chinese hamster aprt gene after exposure to carboplatin: a comparison with cisplatin. , 1992, Carcinogenesis.

[62]  B. Teicher,et al.  Spectrum of cis‐diamminedichloroplatinum(II)‐induced mutations in a shuttle vector propagated in human cells , 1991, Molecular carcinogenesis.

[63]  A. Eastman,et al.  Characterization of adducts produced in DNA by isomeric 1,2-diaminocyclohexaneplatinum(II) complexes. , 1989, Chemico-biological interactions.

[64]  A. Eastman The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. , 1987, Pharmacology & therapeutics.