Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission.

The luminescent solar concentrator (LSC) offers a potential pathway for achieving low-cost, fixed-tilt light concentration. Despite decades of research, conversion efficiency for LSC modules has fallen far short of that achievable by geometric concentrators. However, recent advances in anisotropically emitting nanophotonic structures could enable a significant step forward in efficiency. Here, we employ Monte Carlo ray-trace modeling to evaluate the conversion efficiency for anisotropic luminophore emission as a function of photoluminescence quantum yield, waveguide concentration, and geometric gain. By spanning the full LSC parameter space, we define a roadmap toward high conversion efficiency. An analytical function is derived for the dark radiative current of an LSC to calculate the conversion efficiency from the ray-tracing results. We show that luminescent concentrator conversion efficiency can be increased from the current record value of 7.1-9.6% by incorporating anisotropy. We provide design parameters for optimized luminescent solar concentrators with practical geometrical gains of 10. Using luminophores with strongly anisotropic emission and high (99%) quantum yield, we conclude that conversion efficiencies beyond 28% are achievable. This analysis reveals that for high LSC performance, waveguide losses are as important as the luminophore quantum yield.

[1]  Tilmann E. Kuhn,et al.  Review of technological design options for building integrated photovoltaics (BIPV) , 2020 .

[2]  Lai-Wang Wang,et al.  The value of aesthetics in the BIPV roof products segment: a multiperspective study under European market conditions , 2020 .

[3]  W. V. van Sark,et al.  Should Anisotropic Emission or Reabsorption of Nanoparticle Luminophores Be Optimized for Increasing Luminescent Solar Concentrator Efficiency? , 2020 .

[4]  David R. Needell,et al.  Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators , 2020, ACS Photonics.

[5]  S. Avesani,et al.  State-of-the-art and SWOT analysis of building integrated solar envelope systems , 2019 .

[6]  David R. Needell,et al.  Life Cycle Assessment of tandem LSC-Si devices , 2019, Energy.

[7]  Yongcao Zhang,et al.  Luminescent solar concentrators performing under different light conditions , 2019, Solar Energy.

[8]  Alberto Salleo,et al.  Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield , 2019, Science.

[9]  W. V. Sark,et al.  Visual Appearance of Nanocrystal-Based Luminescent Solar Concentrators , 2019, Materials.

[10]  S. B. Srivastava,et al.  Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins. , 2019, ACS applied materials & interfaces.

[11]  Suhaidi Shafie,et al.  A review of transparent solar photovoltaic technologies , 2018, Renewable and Sustainable Energy Reviews.

[12]  Michael G. Debije,et al.  Multistate Luminescent Solar Concentrator “Smart” Windows , 2018 .

[13]  Kaifeng Wu,et al.  Tandem luminescent solar concentrators based on engineered quantum dots , 2018 .

[14]  Vivian E. Ferry,et al.  Designing spectrally-selective mirrors for use in luminescent solar concentrators , 2018 .

[15]  Francesco Meinardi,et al.  Luminescent solar concentrators for building-integrated photovoltaics , 2017 .

[16]  Richard R. Lunt,et al.  Emergence of highly transparent photovoltaics for distributed applications , 2017 .

[17]  David R. Needell,et al.  Micro-optical Tandem Luminescent Solar Concentrators , 2017, 1710.00034.

[18]  W. V. Sark,et al.  Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration , 2017 .

[19]  T. Gregorkiewicz,et al.  Integrating Quantum Dots and Dielectric Mie Resonators: A Hierarchical Metamaterial Inheriting the Best of Both , 2017, ACS photonics.

[20]  Erdem Cuce,et al.  Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review , 2016 .

[21]  Sue A. Carter,et al.  Power generation study of luminescent solar concentrator greenhouse , 2016 .

[22]  Lanfang Li,et al.  Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors , 2016 .

[23]  Rebecca J. Yang,et al.  Building integrated photovoltaics (BIPV): costs, benefits, risks, barriers and improvement strategy , 2016 .

[24]  Michael G. Debije,et al.  Direct versus indirect illumination of a prototype luminescent solar concentrator , 2015 .

[25]  Noah D Bronstein,et al.  Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration , 2015 .

[26]  M. Debije,et al.  Distribution of absorbed heat in luminescent solar concentrator lightguides and effect on temperatures of mounted photovoltaic cells , 2015 .

[27]  I. Papakonstantinou,et al.  Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator , 2014 .

[28]  Paul P. C. Verbunt,et al.  Anisotropic light emission from aligned luminophores , 2014 .

[29]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[30]  Bryce S. Richards,et al.  Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV , 2014 .

[31]  Daniel Chemisana,et al.  Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials , 2013 .

[32]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[33]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[34]  D. F. Kelley,et al.  Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles , 2011 .

[35]  Richard R. Lunt,et al.  Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications , 2011 .

[36]  Paul P. C. Verbunt,et al.  Polarization-independent filters for luminescent solar concentrators , 2011 .

[37]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[38]  Michael G. Debije,et al.  Solar Energy Collectors with Tunable Transmission , 2010 .

[39]  Cees W. M. Bastiaansen,et al.  Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals , 2009 .

[40]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[41]  Uwe Rau,et al.  Collection and conversion properties of photovoltaic fluorescent collectors with photonic band stop filters , 2006, SPIE Photonics Europe.

[42]  K. W. J. Barnham,et al.  The luminescent concentrator illuminated , 2006, SPIE Photonics Europe.

[43]  Uwe Rau,et al.  Efficiency limits of photovoltaic fluorescent collectors , 2005 .

[44]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[45]  I. Papakonstantinou,et al.  Losses in luminescent solar concentrators unveiled , 2016 .

[46]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .