Bottom-up synthesis of porous coordination frameworks: apical substitution of a pentanuclear tetrahedral precursor.

Top down goes bottom up: A family of microporous interpenetrating diamond frameworks can be constructed from a pentanuclear tetrahedral complex with nitrate groups at the apical positions as an inorganic precursor. A "bottom-up" methodology was used for substitution of the nitrate groups by linear ditopic carboxylate ligands (see picture). The Langmuir surface area of the resulting frameworks is higher than that of classical zeolites.

[1]  D. Olson,et al.  Unique gas and hydrocarbon adsorption in a highly porous metal-organic framework made of extended aliphatic ligands. , 2008, Chemical communications.

[2]  Vladislav A. Blatov,et al.  Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs , 2008 .

[3]  S. Ng,,et al.  Two highly-connected, chiral, porous coordination polymers featuring novel heptanuclear metal carboxylate clusters. , 2008, Chemical communications.

[4]  Lan-sun Zheng,et al.  The designed assembly of augmented diamond networks from predetermined pentanuclear tetrahedral units. , 2008, Angewandte Chemie.

[5]  V. Blatov,et al.  Interpenetrated Three-Dimensional Networks of Hydrogen-Bonded Organic Species: A Systematic Analysis of the Cambridge Structural Database , 2008 .

[6]  S. Qiu,et al.  Mesoporous metal-organic framework with rare etb topology for hydrogen storage and dye assembly. , 2007, Angewandte Chemie.

[7]  Hong‐Cai Zhou,et al.  Construction of robust open metal-organic frameworks with chiral channels and permanent porosity. , 2007, Inorganic chemistry.

[8]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[9]  Neil R Champness,et al.  Coordination frameworks--where next? , 2006, Dalton transactions.

[10]  J. Wuest,et al.  Engineering crystals by the strategy of molecular tectonics. , 2005, Chemical communications.

[11]  V. Blatov,et al.  Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD) , 2005 .

[12]  Dong‐sheng Li,et al.  Self-assembly of an interlaced triple-stranded molecular braid with an unprecedented topology through hydrogen-bonding interactions. , 2005, Angewandte Chemie.

[13]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[14]  Mir Wais Hosseini,et al.  Molecular tectonics: from simple tectons to complex molecular networks. , 2005, Accounts of chemical research.

[15]  Gérard Férey,et al.  A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. , 2004, Angewandte Chemie.

[16]  Vladislav A. Blatov,et al.  Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database , 2004 .

[17]  M. W. Hosseini Reflexion on molecular tectonics , 2004 .

[18]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[19]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[20]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[21]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[22]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[23]  M. Jennings,et al.  Self-assembly of an organometallic side-by-side double helix. , 2002, Chemical communications.

[24]  Wenbin Lin,et al.  Crystal engineering of NLO materials based on metal--organic coordination networks. , 2002, Accounts of chemical research.

[25]  Kimoon Kim Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society Reviews.

[26]  A. J. Blake,et al.  Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands , 2001 .

[27]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[28]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[29]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[30]  A. P. Shevchenko,et al.  TOPOS3.2: a new version of the program package for multipurpose crystal- chemical analysis , 2000 .

[31]  Michael O'Keeffe,et al.  Frameworks for Extended Solids: Geometrical Design Principles , 2000 .

[32]  J. Zubieta,et al.  Organisch‐anorganische Hybridmaterialien: von „einfachen”︁ Koordinationspolymeren zu Molybdänoxiden mit Organodiamin‐Templaten , 1999 .

[33]  J. Zubieta,et al.  Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. , 1999, Angewandte Chemie.

[34]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[35]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[36]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[37]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[38]  S. Batten,et al.  Crystal Engineering of Novel Materials Composed of Infinite Two- and Three-Dimensional Frameworks , 1992 .

[39]  James D. Wuest,et al.  Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers , 1991 .

[40]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[41]  Hsiu-Mei Lin,et al.  Crystal engineering toward intersecting channels in a interpenetrated diamondoid network based on a net-to-net H-bonding interaction. , 2003, Chemical communications.

[42]  Mir Wais Hosseini,et al.  Design and structural analysis of interpenetrated 3-D co-ordination networks formed by self-assembly using tetrapyridinoocyclophane and silver cations , 2001 .

[43]  Alexander J. Blake,et al.  Control of interpenetrating copper(i) adamantoid networks:synthesis and structure of{[Cu(bpe)2]BF4}n , 1997 .