On periods and equilibria of computational sequential systems

Abstract In this paper, we show that sequential systems with (Boolean) maxterms and minterms as global evolution operators can present orbits of any period. Besides, we prove that periodic orbits with different periods greater than or equal to 2 can coexist. Nevertheless, when a sequential dynamical system has fixed points, we demonstrate that periodic orbits of other periods cannot appear. Finally, we provide conditions to obtain a fixed point theorem in this context. This work provides a relevant advance in the knowledge of the dynamics of such systems which constitute one of the most effective mathematical tools to model computational processes and other phenomena from other Sciences. Moreover, the ideas developed here could help to obtain similar results for other related systems.

[1]  William Y. C. Chen,et al.  Discrete dynamical systems on graphs and Boolean functions , 2004, Math. Comput. Simul..

[2]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[3]  Juan A. Aledo,et al.  Graph Dynamical Systems with General Boolean States , 2015 .

[4]  R. Laubenbacher,et al.  On the computation of fixed points in Boolean networks , 2012 .

[5]  Adrien Richard,et al.  Maximum number of fixed points in AND-OR-NOT networks , 2014, J. Comput. Syst. Sci..

[6]  Juan A. Aledo,et al.  Parallel discrete dynamical systems on maxterm and minterm Boolean functions , 2012, Math. Comput. Model..

[7]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[8]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[9]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[10]  Z. Toroczkai,et al.  Proximity networks and epidemics , 2007 .

[11]  Giampiero Chiaselotti,et al.  Parallel and sequential dynamics of two discrete models of signed integer partitions , 2014, Appl. Math. Comput..

[12]  Gianpiero Cattaneo,et al.  A new discrete dynamical system of signed integer partitions , 2016, Eur. J. Comb..

[13]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[14]  Christian M. Reidys,et al.  ETS IV: Sequential dynamical systems: fixed points, invertibility and equivalence , 2003, Appl. Math. Comput..

[15]  Pino Caballero-Gil,et al.  On the Use of Cellular Automata in Symmetric Cryptography , 2006, ArXiv.

[16]  Christian M. Reidys,et al.  Elements of a theory of simulation III: equivalence of SDS , 2001, Appl. Math. Comput..

[17]  Christian M. Reidys,et al.  Elements of a theory of computer simulation I: Sequential CA over random graphs , 1999, Appl. Math. Comput..

[18]  Gul A. Agha,et al.  On Computational Complexity of Counting Fixed Points in Symmetric Boolean Graph Automata , 2005, UC.

[19]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[20]  Abhijin Adiga,et al.  Limit cycle structure for dynamic bi-threshold systems , 2014, Theor. Comput. Sci..

[21]  Juan A. Aledo,et al.  Parallel discrete dynamical systems on independent local functions , 2013, J. Comput. Appl. Math..

[22]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[23]  Christian M. Reidys,et al.  On Acyclic Orientations and Sequential Dynamical Systems , 2001, Adv. Appl. Math..

[24]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[25]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[26]  Feng Jian,et al.  Complex Network Theory and Its Application Research on P2P Networks , 2016 .